# POSITIONIER- UND BAHNSTEUERUNG MCU-G3 INBETRIEBNAHME-HANDBUCH/IHB

Stand: 24.11.2021, ab Disk V2.53VM Board-Revision: MCU-3000 Rev. D MCU-3400C Rev. A MCU-3100 Rev.C MCU-3106 Rev.B

### <u>Urheberrecht</u>

Das Urheberrecht an diesem Handbuch verbleibt bei der Firma Rösch & Walter Industrie-Elektronik GmbH.

Diese Betriebsanleitung bestehend aus den Teilen BHB, IHB und PHB ist nur für den Betreiber und dessen Personal bestimmt. Sie enthält die Vorschriften und Hinweise, die weder vollständig noch teilweise

- vervielfältigt
- verbreitet oder
- Anderweitig mitgeteilt werden dürfen.

Zuwiderhandlungen können strafrechtliche Folgen nach sich ziehen.

#### Gewährleistung und Haftung

Gewährleistungs- und Haftungsansprüche bei Personen- und Sachschäden sind ausgeschlossen, wenn sie auf eine oder mehrere der folgenden Ursachen zurückzuführen sind:

- nicht bestimmungsgemäße Verwendung der Karte
- unsachgemäßes Installieren, Inbetriebnahmen, Betreiben und Instandhalten der Karte
- Betreiben der Karte bei defekten Sicherheitseinrichtungen oder nicht ordnungsgemäß angebrachten oder nicht funktionsfähigen Sicherheits- und Schutzvorrichtungen
- Nichtbeachten der Hinweise in der Betriebsanleitung bezüglich Transport, Lagerung, Einbau, Inbetriebnahme, Betrieb, Grenzwerten, Instandhaltung der Karte, Standardsoftware
- eigenmächtiges Verändern der Karte
- eigenmächtiges Verändern der Quellcode-Dateien
- mangelhafte Überwachung von Teilen, die einem Verschleiß unterliegen
- Katastrophenfälle durch Fremdkörpereinwirkung und höhere Gewalt.

#### Rösch&Walter-Software Produktlizenz

Bitte lesen Sie diese Lizenz sorgfältig durch, bevor Sie die Standardsoftware verwenden. Das Recht zur Benutzung dieser Software wird dem Kunden nur dann gewährt, wenn er den Bedingungen dieser Lizenz zustimmt.

- Die Standardsoftware darf nur zur Einstellung der Rösch & Walter Karten verwendet werden.
- Das Kopieren der Software ist verboten (außer zur Archivierung / Datensicherung und zum Austausch defekter Datenträger)
- Disassemblierung, Dekompilierung, Entschlüsselung und Reverse Engineering der Software ist verboten.
- Diese Lizenz und die Software können an eine dritte Partei übertragen werden, sofern diese Partei eine Karte käuflich erworben hat, sich mit allen Bestimmungen in diesem Lizenzvertrag einverstanden erklärt und der ursprüngliche Besitzer keine Kopien der Software zurückhält.

#### Warenzeichen

Borland C++ und Borland Delphi sind eingetragene Warenzeichen der Borland International, INC. MIPS ist ein eingetragenes Warenzeichen der Mips Technologies Inc. RM5231 ist ein eingetragenes Warenzeichen der PMC Sierra Inc. Microsoft, MS-DOS, Visual Basic, Visual C und Windows sind eingetragene Warenzeichen der Microsoft Corporation.



# ★★★ Schützen Sie sich, andere und die Umwelt ★★★

# Sicherheitshinweise unbedingt lesen!

Liegt Ihnen kein Blatt "Sicherheitshinweise" vor, so fordern Sie dieses bitte an.

# Anweisungen des Handbuches beachten

Vergewissern Sie sich, dass Sie keinen Schritt vergessen oder übersprungen haben. Wir übernehmen keine Verantwortung für Schäden, die aus dem falschem Einsatz und Gebrauch der Karte hervorgehen könnten.

# Verwendete Symbole



# WICHTIG!

bezeichnet Anwendungstipps und andere Informationen.



# WARNUNG!

bezeichnet eine möglicherweise gefährliche Situation. Bei Nichtbeachten des Hinweises können Karte, PC und/oder Peripherie zerstört werden

# Haben Sie noch Fragen?

Unser technischer Support steht Ihnen gerne zur Verfügung.

| 1 | Einführung | ) |
|---|------------|---|
|---|------------|---|

| 2 B | estimmungsgemäße | Verwendung |  |  | 1 | 0 |
|-----|------------------|------------|--|--|---|---|
|-----|------------------|------------|--|--|---|---|

| 2.1 | Besondere Hinweise für die MCU-6000 / APCI-8401          | 10 |
|-----|----------------------------------------------------------|----|
| 2.2 | Besondere Hinweise für die MCU-3000 und MCU-3100         | 10 |
| 2.3 | Besondere Hinweise für die MCU-3106 / APCI-8008-STP-EVAI | 10 |
| 2.4 | Besondere Hinweise für die MCU-3400C / CPCI-8004         | 11 |
| 2.5 | Grenzen der Verwendung                                   | 11 |
| 2.6 | BENUTZER                                                 | 12 |
|     | 2.6.1 Qualifikation                                      | 12 |
|     | 2.6.2 Persönliche Schutzausrüstung                       | 12 |
| 2.7 | Handhabung der Karte                                     | 13 |
| 2.8 | Wichtig!                                                 | 13 |

# 3 Installation und Konfiguration der MCU-G3 TOOLSET Software ......14

| 3.1  | Lieferumfang der  | MCU-G3 TOOLSET Software                        | 14 |
|------|-------------------|------------------------------------------------|----|
| 3.2  | rnwmc-Gerätetre   | iber Installieren                              | 14 |
| 3.3  | MCFG installierer | ٩                                              | 14 |
| 3.4  | FWSETUP install   | lieren                                         | 14 |
| 3.5  | FWSETUP starte    | n                                              | 15 |
| 3.6  | Systemverzeichn   | is anlegen                                     | 15 |
| 3.7  | MCFG - Projektu   | mgebung einrichten                             | 16 |
| 3.8  | MCU-G3 Controll   | er booten                                      | 17 |
| 3.9  | Konfigurations-Fe | ehler                                          | 18 |
| 3.10 | Erneuter Aufruf v | on fwsetup.exe                                 | 19 |
| 3.11 | Systemdaten erfa  | assen und speichern                            | 20 |
| 3.12 | Umgebungsvaria    | ble der Steuerungshardware                     | 21 |
|      | 3.12.1 Die Umge   | ebungsvariable MT (MotorType)                  | 22 |
|      | 3.12.1.1          | Motortyp SSI (2)                               | 23 |
|      | 3.12.1.2          | Motortyp INC PWM (3)                           | 23 |
|      | 3.12.1.3          | Motortyp STEPPER SSI (4)                       | 24 |
|      | 3.12.1.4          | Motortyp ANALOG PWM (5)                        | 24 |
|      | 3.12.1.5          | Motortyp STEPPER NDX (6)                       | 24 |
|      | 3.12.1.6          | Motortyp ANALOG / ANALOG (7)                   | 24 |
|      | 3.12.1.7          | Motortyp Enkoder Emulation (8)                 | 24 |
|      | 3.12.1.8          | Motortyp Piezo-Motor (9)                       | 24 |
|      | 3.12.1.9          | Motortyp PSM (10)                              | 24 |
|      | 3.12.1.10         | Motortyp ENDAT (11 + 16)                       | 25 |
|      | 3.12.1.11         | Motortyp INC_PULSE (12)                        | 26 |
|      | 3.12.1.12         | Motortyp VIRTUAL(13)                           | 26 |
|      | 3.12.1.13         | Motortyp GEOADD (14)                           | 26 |
|      | 3.12.1.14         | Motortyp UPDOWNSIGNALS (15)                    | 26 |
|      | 3.12.1.15         | Motortyp ANA_SIGN (19)                         | 26 |
|      | 3.12.1.16         | Motortyp CI / ANALOG und CD / ANALOG (20 + 21) | 27 |

|   |           |                      | 3.12.1.17 Motortyp STEPPER_ENDAT2_2 (22)                                             | 27                   |
|---|-----------|----------------------|--------------------------------------------------------------------------------------|----------------------|
|   |           |                      | 3.12.1.18 Motortyp ETM (23)                                                          | 27                   |
|   |           |                      | 3.12.1.19 Motortyp ANA SIGN SSI (24)                                                 | 27                   |
|   |           |                      | 3.12.1.20 Motortyp ANA SIGN ENDAT2 2 (25)                                            | 27                   |
|   |           |                      | 3.12.1.21 Motortyp SSI PULSE (26)                                                    | 27                   |
|   |           | 3.12.2               | 2 Die Umgebungsvariable NumberAxis                                                   | 28                   |
|   |           | 3.12.3               | 3 Die Umgebungsvariable SampleTime                                                   | 28                   |
|   |           | 3.12.4               | Die Umgebungsvariable SZTSK?                                                         | 28                   |
|   |           | <mark>3.12.</mark>   | MCU-3000 / APCI-8001: Konfiguration der Analogen Eingangsspannungsbereiche           | 28                   |
|   |           | <mark>3.12.</mark> 6 | MCU-3100 / APCI-8008: Konfiguration der Analogen Eingangsspannungsbereiche           | 29                   |
|   |           | 3.12.7               | Die Umgebungsvariable FBCH?                                                          | 29                   |
|   | 3.13      | Beso                 | nderheiten bei den Systemparametern für Servo- und Schrittmotorachsen                | 30                   |
|   | 3.14      | Zusät                | zliche Installationshinweise bei Windows NT                                          | 31                   |
|   | 3.15      | Aktua                | lisierung der MCU-G3-Flash-Firmware (PMON)                                           | 31                   |
|   | 3.16      | Falls                | Probleme auftauchen                                                                  | 31                   |
|   |           |                      |                                                                                      |                      |
| 4 | Installat | ion do               | MCII C2 im BC                                                                        | 22                   |
| 4 | mstanat   | ion de               |                                                                                      |                      |
|   |           |                      |                                                                                      |                      |
|   | 4.1       | MCU                  | G3 Controller einbauen                                                               | 32                   |
|   |           | 4.1.1                | Installation unter W98                                                               | 34                   |
|   |           |                      |                                                                                      |                      |
| 5 | Konfigu   | ration               | und Verdrahtung der MCU-G3                                                           |                      |
| • |           |                      |                                                                                      |                      |
|   |           |                      | · · · · · · · · · · · · · · · · · · ·                                                | ~-                   |
|   | 5.1       | Einba                | u, Inbetriebnahme und Tausch                                                         | 35                   |
|   | 5.2       | Umge                 | Bung                                                                                 | 35                   |
|   |           | 5.2.1                | Stecker X1: 50-poliger SUB-D-Steckverbinder (Stift) MCU-3000 / MCU-3100              | 36                   |
|   |           | 5.2.2                | Zaniweise des 50-poligen SUB-D-Steckers (Stift) X1                                   | 37                   |
|   |           | 5.2.3                | Stecker X1: 78-poliger SUB-D-Steckverbinder (Buchse) MCU-3400C                       | 38                   |
|   |           | 5.2.4                | Stecker X1: 78-poliger SUB-D-Steckverbinder (Buchse) MCU-3106                        | 40                   |
|   |           | 5.2.5                | Zaniweise des 78-poligen SUB-D-Steckers (Buchse) X1                                  | 41                   |
|   |           | 5.2.6                |                                                                                      | 42                   |
|   |           |                      | 5.2.6.1 Sollwertkanal für Servomotorachsen MCU-3000 / MCU-3100                       | 43                   |
|   |           |                      | 5.2.6.1.1 Pinbelegung Stecker X1, Achskanal 1                                        | 43                   |
|   |           |                      | 5.2.6.1.2 Pinbelegung Stecker X1, Achskanal 2                                        | 43                   |
|   |           |                      | 5.2.6.1.3 Pinbelegung Stecker XT, Achskanal 3                                        | 43                   |
|   |           |                      | 5.2.0.2 Soliwertkanar für Schnittmotorachsen Micu-3000 / Micu-3100                   | 44                   |
|   |           |                      | 5.2.6.2.2 Pinbelegung Stecker X1, Achskanal 2                                        | 44                   |
|   |           |                      | 5.2.6.2.3 Pinbelegung Stecker X1, Achskanal 3                                        | 44                   |
|   |           |                      | 5.2.6.2. Analogausgänge bei der MCL-3100                                             |                      |
|   |           |                      | 5.2.6.4 Sollwertkanäle bei der MCU-3/00C                                             | 45                   |
|   |           | 527                  |                                                                                      | 45                   |
|   |           | 5.2.7                | 5 2 7 1 SSI-Absolutivertgeber                                                        | 40                   |
|   |           |                      | 5.2.7.1 Sol-Absolutivertgeber                                                        | 40                   |
|   |           |                      | 5.2.7.2 Ender-Absolutivertigebei                                                     | 47<br>\ 47           |
|   |           |                      | 5.2.7.5 Inkrementalenkoder ohne invertierte Signale (symmetrische Beschaltung        | ).47<br>1)/7         |
|   |           |                      | 5.2.7.7 Initione International on the inventerie orginale (asymmetrisone Deschaltung | ידע<br>⊿∆            |
|   |           |                      | 5.2.7.6 Steckerbelegung für die Impulserfassungskanäle mit Inkrementalgebern         | +9<br>⊿0             |
|   |           |                      | 5.2.7.6 1 Steckerbeleguing X1 Kanal 1                                                | 9+<br>⊿0             |
|   |           |                      | 52762 Steckerbelegung X1, Kanal 2                                                    | <del>-</del> 9<br>⊿0 |
|   |           |                      | 5 2 7 6 3 Steckerbelegung X1, Kanal 3                                                | <del>4</del> 9<br>20 |
|   |           |                      | 5277 Impulserfassungskanäle hei der MCLI-3400C                                       | 50                   |
|   |           | 528                  | Pinbelegung Stecker X1 Digitale Fingange (MCLI-3000 / MCLI-3100)                     |                      |
|   |           | 0.2.0                | 5281 Prinzipschaltbild der MCU-G3-Digital-Fingänge I1 I13                            | 50                   |
|   |           |                      |                                                                                      |                      |

6

|    |         | 5.2.8.2 Prinzipschaltbild der MCU-G3-Digital-Eingänge I14I16                                                                                                                                                                                                                                                                                                                   | 50                         |
|----|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|    |         | 5.2.9 Pinbelegung Stecker X1, Digitale Ausgänge (MCU-3000 / MCU-3100)                                                                                                                                                                                                                                                                                                          | 51                         |
|    |         | 5.2.9.1 Prinzipschaltbild der MCU-G3-Digital-Ausgänge O1O8                                                                                                                                                                                                                                                                                                                     | 51                         |
|    |         | 5.2.10 MCU-3000 Pinbelegung Stecker P5, Freigaberelais                                                                                                                                                                                                                                                                                                                         | 52                         |
|    |         | 5.2.11 MCU-3400C Pinbelegung Stecker P1, Freigaberelais                                                                                                                                                                                                                                                                                                                        | 52                         |
|    |         | 5.2.12 Anschluss- und Verdrahtungshinweise                                                                                                                                                                                                                                                                                                                                     | 53                         |
|    |         | 5.2.12.1 Masse- und Stromversorgungen                                                                                                                                                                                                                                                                                                                                          | 53                         |
|    |         | 5.2.12.2 Potentialausgleich                                                                                                                                                                                                                                                                                                                                                    | 53                         |
|    |         | 5.2.12.3 Schirmführung                                                                                                                                                                                                                                                                                                                                                         | 53                         |
|    | 5.3     | Einsatz mehrerer MCUG3-Controller in einem PC                                                                                                                                                                                                                                                                                                                                  | 54                         |
|    | 5.4     | Bestückungsdruck der MCU-3000                                                                                                                                                                                                                                                                                                                                                  | 55                         |
|    | 5.5     | Bestückungsdruck der MCU-3000 (Bottom-Side)                                                                                                                                                                                                                                                                                                                                    | 56                         |
|    | 5.6     | Bestückungsdruck der MCU-3100                                                                                                                                                                                                                                                                                                                                                  | 57                         |
|    | 5.7     | Bestückungsdruck der MCU-3100 (Bottom-Side)                                                                                                                                                                                                                                                                                                                                    | 58                         |
|    | 5.8     | Bestückungsdruck der MCU-3400C                                                                                                                                                                                                                                                                                                                                                 | 59                         |
|    | 5.9     | Bestückungsdruck der MCU-3106 – Top Side                                                                                                                                                                                                                                                                                                                                       | 60                         |
|    | 5.10    | Bestückungsdruck der MCU-3106 – Bottom Side                                                                                                                                                                                                                                                                                                                                    | 61                         |
|    | 5.11    | Technische Daten der MCU-3000 / MCU-3400C                                                                                                                                                                                                                                                                                                                                      | 62                         |
|    |         |                                                                                                                                                                                                                                                                                                                                                                                |                            |
|    |         |                                                                                                                                                                                                                                                                                                                                                                                |                            |
| Ei | nstellu | Ingen und Projektierungen                                                                                                                                                                                                                                                                                                                                                      | 64                         |
|    |         |                                                                                                                                                                                                                                                                                                                                                                                |                            |
|    | 6.1     | Freischaltausgang für Leistungsendstufe                                                                                                                                                                                                                                                                                                                                        |                            |
|    | 62      |                                                                                                                                                                                                                                                                                                                                                                                |                            |
|    |         | Ermittlung der PIDE-Filterparameter                                                                                                                                                                                                                                                                                                                                            |                            |
|    | 0.2     | Ermittlung der PIDF-Filterparameter                                                                                                                                                                                                                                                                                                                                            | 64                         |
|    | 0.2     | Ermittlung der PIDF-Filterparameter<br>6.2.1 Drehzahlregler<br>6.2.2 Stromverstärker                                                                                                                                                                                                                                                                                           | 64<br>64<br>65             |
|    | 0.2     | Ermittlung der PIDF-Filterparameter<br>6.2.1 Drehzahlregler<br>6.2.2 Stromverstärker<br>6.2.3 Spannungsverstärker.                                                                                                                                                                                                                                                             | 64<br>64<br>65<br>65       |
|    | 0.2     | Ermittlung der PIDF-Filterparameter<br>6.2.1 Drehzahlregler<br>6.2.2 Stromverstärker<br>6.2.3 Spannungsverstärker<br>6.2.4 Schrittmotorleistungsverstärker                                                                                                                                                                                                                     | 64<br>64<br>65<br>65<br>65 |
|    | 0.2     | Ermittlung der PIDF-Filterparameter<br>6.2.1 Drehzahlregler<br>6.2.2 Stromverstärker<br>6.2.3 Spannungsverstärker<br>6.2.4 Schrittmotorleistungsverstärker<br>6.2.4.1 Schrittmotorsystem ohne Positionsrückmeldung                                                                                                                                                             | 64<br>65<br>65<br>65<br>65 |
|    | 0.2     | Ermittlung der PIDF-Filterparameter                                                                                                                                                                                                                                                                                                                                            |                            |
|    | 0.2     | Ermittlung der PIDF-Filterparameter                                                                                                                                                                                                                                                                                                                                            |                            |
|    | 0.12    | Ermittlung der PIDF-Filterparameter                                                                                                                                                                                                                                                                                                                                            |                            |
|    | 0.12    | Ermittlung der PIDF-Filterparameter<br>6.2.1 Drehzahlregler<br>6.2.2 Stromverstärker<br>6.2.3 Spannungsverstärker<br>6.2.4 Schrittmotorleistungsverstärker<br>6.2.4.1 Schrittmotorsystem ohne Positionsrückmeldung<br>6.2.4.2 Leistungsverstärker mit Schritt-Richtungs-Sollwerteingang und<br>Positionsregelung<br>6.2.5 Vorsteuerung<br>6.2.5.1 Ermittlung der Koeffizienten |                            |

# 1 Einführung

| Wozu dient dieses<br>Handbuch?                  | Dieses Handbuch beschreibt die Inbetriebnahme aller erforderlichen<br>Systemkomponenten für den Einsatz der <b>MCU-G3</b> Positionier- und<br>Bahnsteuerungen. Das komplette Handbuch besteht aus drei Teilen: BHB<br>(Bedienungs-Handbuch), IHB (Inbetriebnahme-Handbuch) und PHB<br>(Programmierhandbuch). |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Welche Geräte<br>gehören zur<br>MCU-G3-Familie? | Bei der MCU-G3-Familie handelt sich um Positionier- und Bahnsteuerungen der dritten Generation. Hierzu gehören z.Zt. die Positionier- und Bahnsteuerungen MCU-3000 (APCI-8001), MCU-6000 (APCI-8401), MCU-3400C (CPCI-8004) und MCU-3100 (APCI-8008). Weitere Geräte sind in Planung.                        |
| Weitere<br>Anmerkungen                          | Sofern die in diesem Handbuch beschriebenen Funktionen nicht für alle Geräte der MCU-G3-Familie übereinstimmen, sind diese besonders gekennzeichnet. In diesem Fall gilt die entsprechende Funktion nur für das jeweils gekennzeichnete Gerät!                                                               |

# 2 Bestimmungsgemäße Verwendung

Die MCU-G3 Controller-Karten (MCU-3000, MCU-3100, MCU-6000 und MCU-3400C) stellen die Schnittstelle zwischen industrieller Prozess-, Automatisierungs-, und Antriebstechnik und einem Personalcomputer (PC) her.

Die Karte eignet sich für den Einsatz in einem PC, der mit freien PCI - Steckplätzen ausgerüstet ist. Der PC unterliegt der EG-Richtlinie 898/336/EWG und muss die entsprechenden EMV - Schutzanforderungen erfüllen.

Produkte, welche diese Forderung erfüllen tragen das  ${f C}{f E}$  Zeichen.

# 2.1 Besondere Hinweise für die MCU-6000 / APCI-8401

Der Datenaustausch zwischen den MCU-G3 Karten des Typs MCU-6000 / APCI-8401 und der Peripherie erfolgt über ein bis zu sechs Lichtwellenleiterkabel. Als Peripheriebaugruppen dienen hierzu spezielle Anschaltbaugruppen des Typs ASM-2003.

# 2.2 Besondere Hinweise für die MCU-3000 und MCU-3100

Der Datenaustausch zwischen den MCU-G3 Karten des Typs MCU-3000 und MCU-3100 und der Peripherie erfolgt über ein geschirmtes Kabel. Dieses Kabel ist an den 50pol. SUB-D Stiftstecker der MCU-3000 / MCU-3100 anzuschließen.

Die MCU-3000 / MCU-3100 besitzt u.a. auch digitale Ausgänge zur Verarbeitung von 24V-Signalen. Zum Betrieb dieser Ausgänge ist eine <u>externe 24V-Versorgungsspannung erforderlich</u>.

Die Klemmenplatine PX-3000 ermöglicht den Anschluss der 24V-Versorgungsspannung über ein geschirmtes Kabel.

Der Einsatz der MCU-3000 / MCU-3100 in Kombination mit externen Klemmenplatinen setzt eine fachgerechte Installation in einem geschlossenen Schaltschrank voraus. Prüfen Sie das Schirmdämpfungsmaß von PC-Gehäuse und Kabelschirm bevor Sie das Gerät in Betrieb nehmen.

Die Verwendung des Standardkabels ST8000-16 erfüllt die Mindestanforderungen: metallisierte Steckergehäuse,

metallisiente Steckergena

geschirmtes Kabel,

Kabelschirm über Isolierung zurückgeklappt und beidseitig fest mit dem Steckergehäuse verschraubt.

# 2.3 Besondere Hinweise für die MCU-3106 / APCI-8008-STP-EVAI

Das Produkt MCU-3106 stellt dem Anwender 6 Stepperachsen mit Enkoderverifikation zur Verfügung. Für diese 6 Achsen stehen 16 digitale Eingänge und maximal 8 digitale Ausgänge zur Verfügung.

Diese Ein- und Ausgänge sind für alle 6 Achsen geshared. Hardware Latcheingänge sind:

I11 für Achse 1 I12 für Achse 2 I13 für Achse 3 I14 für Achse 4 I15 für Achse 5 I16 für Achse 6

Die Ausgänge sind optional. Die +24V Versorgung an Pin 59 von X1 ist nur erforderlich, wenn digitale Ausgänge verwendet werden. An den entsprechenden Pins (digitale Ausgänge) können auch Betriebs-Bereit-Relais oder Analoge Eingänge zur Verfügung stehen. Die entsprechende Konfiguration wird ab Werk vorkonfiguriert. Der Anschluss der externen Komponenten erfolgt über einen weiblichen 78poligen SUB-D Steckverbinder (X1). Ein Optionsprint ist für dieses Gerät nicht vorgesehen.

Der Softwareumfang ist mit den anderen McuG3 Produkten weitgehend identisch. Allerdings ist eine Interpolation nur mit den ersten 4 Achsen möglich. Die Kommandos SMLA und SMLR können auch für die Achsen 5 und 6 aufgerufen werden, allerdings nur als Einzelachs-Verfahrbefehle.

### 2.4 Besondere Hinweise für die MCU-3400C / CPCI-8004

Der Datenaustausch zwischen den MCU-G3 Karten des Typs MCU-3400C / CPCI-8004 und der Peripherie erfolgt über ein geschirmtes Kabel. Dieses Kabel ist an den 78pol. SUB-D Stiftstecker der MCU-3400C / CPCI-8004 anzuschließen.

Die MCU-3400C / CPCI-8004 besitzt u.a. auch digitale Ausgänge zur Verarbeitung von 24V-Signalen. Zum Betrieb dieser Ausgänge ist eine <u>externe 24V-Versorgungsspannung erforderlich</u>.

### 2.5 Grenzen der Verwendung

Durch den Einsatz der Karten einem PC können sich die Störfestigkeits- und Emissionswerte des PC verändern. Erhöhte Emissionen oder verringerte Störfestigkeit können zur Folge haben, dass die Konformität des Systems nicht mehr sichergestellt ist.

Über keine der oben erwähnten Baugruppen (MCU, APCI, und ASM) dürfen NOT-AUS Funktionen übernommen werden!

Die NOT Funktionen müssen separat abgesichert werden. Diese Absicherung darf nicht über die Karten und den Rechner beeinflusst werden.

Die Karte muss bis zum Einsatz in ihrer antistatischen Verpackung bleiben.

Mit dem Entfernen oder durch Änderung der Kennzeichnungsnummern erlischt der Garantieanspruch.

# 2.6 BENUTZER

#### 2.6.1 Qualifikation

Nur ausgebildete Elektronikfachkräfte dürfen folgende Tätigkeiten durchführen: Installation Inbetriebnahme Betrieb Instandhaltung

#### 2.6.2 Persönliche Schutzausrüstung

Beachten Sie die länderspezifischen Bestimmungen zur: Unfallverhütung Einrichtung von elektrischen und mechanischen Anlagen Funkentstörung

# 2.7 Handhabung der Karte



Abb. 2-1: Richtige Handhabung der MCU-G3

Bitte beachten!

Zur Inbetriebnahme sollte folgende Vorgehensweise eingehalten werden:

- Installation der MCU-G3 TOOLSET Software [Kapitel 3] Einbau der MCU-G3 [Kapitel 4]
- Konfiguration und Verdrahtung der MCU-G3 [Kapitel 5]
- Einstellungen und Projektierungen wie in Kapitel 6 und Kapitel [BHB / Kapitel 4.2] beschrieben

# 2.8 Wichtig!

Alle Baugruppen dürfen nur in vollständig abgeschaltetem Zustand des Personal-Computers und der externen Stromversorgungen ein- oder ausgebaut werden.

Bei Nichtbeachtung dieser Vorgabe kann es zur Zerstörung der Baugruppe bzw. des Rechners kommen.

Der Hersteller übernimmt keine Verantwortung für Zerstörungen, die aus dem Einsatz oder der Benutzung von dessen Produkten entstehen könnten.

Der Hersteller übernimmt keine Verantwortung für eventuelle Fehler jedweder Art, die in diesen Handbüchern enthalten sein könnten. Der Hersteller behält sich weiterhin vor, dieses Handbuch und die Spezifikationen des beschriebenen Produkts jederzeit zu ändern, ohne diese Änderung in irgend welcher Form, oder irgend welchen Personen, bekannt geben oder mitteilen zu müssen.

# **3** Installation und Konfiguration der MCU-G3 TOOLSET Software

# 3.1 Lieferumfang der MCU-G3 TOOLSET Software

Die MCU-G3 TOOLSET Software [TSW] wird auf einer CD-ROM ausgeliefert. Diese enthält im wesentlichen folgende Teile:

INF-Datei mit Miniport Gerätetreiber Dienstprogramm mcfg Dienstprogramm fwsetup Kommandozeilenprogramme Firmwareprogramme und Dateien Libraries + Programmierbeispiele Dokumentation

# 3.2 rnwmc-Gerätetreiber Installieren

Áb Version 10.xx muss der rnwmc Gerätetreiber durch Aufruf des enthaltenen Programmes Ksetup9.exe installiert werden. Der unten beschriebene frühere Ablauf ist nun nicht mehr erlaubt und führt zu einem nicht brauchbaren System.

Unter früheren Windows Versionen bis Windows XP konnte man den rnwmc Gerätetreiber installieren wie folgt:

Im <u>Unterverzeichnis \Inf\WIN\_2K\_XP\_Vista\_7</u>der MCU-G3 TOOLSET CD-Rom befindet sich das File rnwmc.inf. Dieses muss für die Plug- und Play-Installation bzw. im Gerätemanager als Installationsfile angegeben werden. Hierdurch wird die aktuelle Hardware-Treiberversion installiert. Für ältere Betriebssysteme ist das INF-File des jeweiligen Verzeichnisses anzugeben. Dann muss zusätzlich der Miniporttreiber per ksetup.exe installiert werden.

# 3.3 MCFG installieren

Im <u>Unterverzeichnis mcfg</u> der MCU-G3 TOOLSET CD-Rom das Installationsprogramm setup.exe aufrufen. Es handelt sich hierbei um ein auf dem Microsoft-Installer basiertes Installationspaket.

# 3.4 FWSETUP installieren

Im <u>Unterverzeichnis fwsetup</u> der MCU-G3 TOOLSET CD-Rom das Installationsprogramm setup.exe aufrufen. Es handelt sich hierbei um ein auf dem Microsoft-Installer basiertes Installationspaket.

# 3.5 FWSETUP starten

Die Anwendung Fwsetup.exe starten. Dort sollte auf der Seite "Monitor" folgende bzw. ähnliche Bildschirmausgabe erfolgen:

| 📶 MCU-G3 TOOLSET [1 board present, current selected #: 1, (Bus) PCI Slot / Function: (2) 0/0, IRQ: 21, Board Type = 💶 🗙                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>File Help</u>                                                                                                                                                                                                                                                                                                                 |
| Memory Monitor PCICardInfo GT64xxx CI Vars Stati Tools PMON Download RWMOS Download CNC DownLoad Flash-Setup                                                                                                                                                                                                                     |
| 1 🙀 🖪 🔳 🖉 🏛 💡 🎯                                                                                                                                                                                                                                                                                                                  |
| NOTICE: set \$netaddr or \$bootp to enable network                                                                                                                                                                                                                                                                               |
| PMON version 4.0.832 [MCU-G3.EL,FP.NET]<br>Algorithmics Ltd.<br>Roesch & Walter GmbH. Jun 24 2003 07:10:42<br>This software is not subject to copyright and may be freely copied.<br>CPU type R5231. Rev 10.0. 140 MHz/70 MHz.<br>Memory size 16 MB.<br>Icache size 32 KB, 32/line (2 way)<br>Deache size 32 KB, 32/line (2 way) |
| PMON>                                                                                                                                                                                                                                                                                                                            |
| 378 RwMos not running!                                                                                                                                                                                                                                                                                                           |

In der Kopfzeile der fwsetup-Anwendung sehen Sie unter anderem auch die Anzahl der erkannten MCU-G3 Controller und um welchen Board-Typ es sich hierbei handelt. Im Anzeigefenster wird u.a. die Versionsnummer des auf der Steuerung gespeicherten Monitorprogramms PMON, die CPU-Frequenz und die Speicherausstattung der Steuerung angezeigt. Sie können durch Drücken des Soft Reset-Button einen Reset auf dem MCU-G3-Controller erzwingen. In diesem Fall sollte die Bildschirmausgabe im Monitorfenster mit weiteren Bildschirmmeldungen gefüllt werden. In diesem Zustand können auf der Steuerung Umgebungsvariable gesetzt werden, mit welchen Eigenschaften des Steuerungssystems eingestellt werden können. Weitere Informationen hierzu sind in Kapitel 3.12 beschrieben.

Im obigen Bild ist der sogenannte fwsetup Monitor Screen dargestellt. So lange die Steuerung noch nicht gebootet ist, befindet sich das System im Monitorprogramm PMON. Hier sind verschiedene Befehlseingaben möglich. Die verfügbaren Befehle können mit dem Kommando h aufgelistet werden. Allerdings sollte man hier nur Operationen aufrufen, die auch wirklich gewollt sind, ansonsten kann man das System in einen unbrauchbaren Zustand bringen.

# 3.6 Systemverzeichnis anlegen

Legen Sie einen Ordner zur Ablage der wichtigsten System-Dateien an. Generieren Sie dort eine Datei System.DAT mit einer der 3 nachfolgend aufgeführten Methoden:

Durch Neuanlegen mit dem Hilfsprogramm sysgen.exe aus dem <u>Unterverzeichnis Toolset</u> der MCU-G3 TOOLSET CD-Rom, oder

durch Kopieren aus dem <u>Unterverzeichnis Firmware und System.dat Files\{G3-Controller}</u> der MCU-G3 TOOLSET CD-Rom (Achtung Read Only Attribute nach Kopiervorgang löschen!) oder

durch Konvertierung eines bereits vorhandenen System.dat-Files mit dem Hilfsprogramm sysconv.exe aus

dem Unterverzeichnis Toolset der MCU-G3 TOOLSET CD-Rom.

Kopieren sie ebenso die Datei RWMOS.ELF aus dem <u>Unterverzeichnis Firmware und System.dat Files\{G3-Controller}</u> in dieses neue angelegte Systemverzeichnis.

**Wichtiger Hinweis:** Die Dateien RWMOS.ELF und SYSTEM.DAT sind speziell konfiguriert für die verschiedenen Baugruppentypen. Die Datei System.dat kann bei Bedarf konvertiert werden. Bei der Datei RWMOS.ELF muss der richtige Typ aus der Toolset-Software verwendet werden, ebenso bei SYSTEM.DAT wobei diese Datei ggf. durch Konvertierung mit sysconv.exe angepasst werden kann.

# 3.7 MCFG - Projektumgebung einrichten

Starten Sie die mcfg.exe-Anwendung

Im Menü [File][Project Parameter] die Einträge entsprechend Ihrem gewählten Systemverzeichnis (siehe oben) aktualisieren.

Bitte Speichern Sie die Projekteinstellungen mit [File][Save As] oder [File][Save].

| 🚧 MCFG - Mcu3000.ini [Demo Mode]                                         | _ 🗗 🗙 |
|--------------------------------------------------------------------------|-------|
| <u>File E</u> dit <u>W</u> indow <u>V</u> iew <u>T</u> ools <u>H</u> elp |       |
|                                                                          |       |
| 🚧 L:\McuG3\rwmos\mcfg\Mcu3000.ini                                        |       |
| Environment Graphic                                                      |       |
| Sustem Files                                                             |       |
| Parameter System Filename:                                               |       |
| C:\Mcu-G3\working\System.dat                                             |       |
|                                                                          |       |
| Operating System Filename (rwtos):                                       |       |
| C:\Mcu-G3\working\rwmos.elf                                              |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |
|                                                                          |       |

# 3.8 MCU-G3 Controller booten

Öffnen Sie das Dialogfenster [Tools][System Boot]

Drücken sie den Knopf [Boot System]

Nach wenigen Sekunden muss die Check-Box [System Booted] markiert werden und in der Kopfzeile der mcfg-Anwendung muß der Eintrag [Online Mode] erscheinen.

| 000 MCFG - Mcu3000.ini [Online Mode]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>-8×</u>     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| Image: Section of the section of t |                |
| Operating System Filenam       System Boot         Image: C:\Mcu-G3\working       Image: System Booted         Autosave       Image: System Filename (rwtos):       Exit         Operating System Filename (rwtos):       C:\Mcu-G3\working\rwmos.elf         Parameter System Filename:       C:\Mcu-G3\working\System.dat         0 0000       0 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| Start 🛛 🚱 Explorer - working 🔊 Installationsanleitung.doc 🚘 MCUG3 Toolset.cpj - CeQ MCFG - IDE for High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>I</b> 13:00 |

# 3.9 Konfigurations-Fehler

Sollte nach dem Booten der Steuerung folgende Fehlermeldung am Bildschirm angezeigt werden so hat dies folgende Ursache:

Die im Projekt ausgewählte Systemdatei (system.dat) und Systemdaten die remanent im Flash-Speicher des MCU-G3-Controllers gespeichert sind weichen voneinander ab. Dieser Fehler kann durch einen Speichervorgang wie im nächsten Kapitel beschrieben beseitigt werden.

| 1277 MCFG - Mcu3000.ini [Online Mode]                                                         | _ 8 ×    |
|-----------------------------------------------------------------------------------------------|----------|
|                                                                                               |          |
|                                                                                               |          |
| M [FMT: SYSFILE MCU-3000 V2.50] C:\Mcu-G3\working\System.dat                                  |          |
| By Number: 1 💌 By Name: A1                                                                    |          |
| Axis specific parameters Motion parameters Motor specific parameters Dig. Inputs Dig. Outputs |          |
| General Parameters                                                                            |          |
|                                                                                               |          |
| Pt Boot System I System Booted                                                                |          |
| Mechanic Param                                                                                |          |
| Operating S Configuration errors detected! -> [TOOLS][Show Conf.Errs]                         |          |
| Encode Parameter ! OK                                                                         |          |
| Zero Offsets {zc                                                                              |          |
| 0: 0,000000 0 0000                                                                            |          |
| 3: 0,00000000E+00 4: 0,00000000E+00 mm                                                        |          |
| Supervisory Parameters                                                                        |          |
| Software limit left side (sl): 0.00000000000000000000000000000000000                          |          |
| Software limit right side (sir): 0.0000000E+00 mm NOFUNC <                                    |          |
|                                                                                               | •        |
|                                                                                               |          |
| man start                                                                                     | J⊑ 15:47 |

### 3.10 Erneuter Aufruf von fwsetup.exe

Ein weiterer Aufruf des Programms fwsetup zeigt auf der Monitorseite nun eine Ausgabe ähnlich nachfolgendem Beispiel:

```
🚧 MCU-G3 TOOLSET [1 board present, current selected #: 1, (Bus) PCI Slot / Function: (2) 0/0, IRQ: 21, Board Type
                                                                                                                                     - 🗆 🗡
 File Help
 Memory Monitor PCICardinfo GT64xxx CI Vars Stati Tools PMON Download RWMOS Download CNC DownLoad Flash-Setup
 🖄 📴 🗈 🗉 🖉 🏠 💡 🎯
 Dcache size 32 KB, 32/line (2 way)
                                                                                                                                           .
 PMON>
 NOTICE: set $netaddr or $bootp to enable network
 PMON version 4.0.832 [MCU-G3,EL,FP,NET]
Algorithmics Ltd.
Roesch & Walter GmbH. Jun 24 2003 07:10:42
This software is not subject to copyright and may be freely copied.
CPU type R5231. Rev 10.0. 140 MHz/70 MHz.
 CPU type R5231. Rev 10.0. 140 MHz.
Memory size 16 MB.
Icache size 32 KB, 32/line (2 way)
Dcache size 32 KB, 32/line (2 way)
 PMON> g
  Info: running » MCU-3000 / APCI-8001 [optionEV, 8A, option1k3, option1k5] «
 rwMOS-code.
Build: 2.5.3.5, Timestamp: Nov 19 2003 10:53:33 .
FFGA Device is a ACEX EP1K50.
  174
                                                                                       RwMos running ...
```

Zusätzlich zur Anzeige wie in Kapitel 3.5 wird nun in der Fußzeile des Programms angezeigt dass rwMOS gestartet ist. Im Monitorfenster werden Angaben über die gestartete Betriebssystemsoftware RWMOS.ELF ausgegeben. Dies sind zunächst die in der gebooteten RwMos-Variante vorhandenen Softwareoptionen. Weiterhin die Betriebssystemversion mit Erstelldatum und Angaben zur Hardwareausstattung der Steuerungsvariante (hier ACEX EP1K50). Diese Anzeige ist besonders dann zu beachten, wenn beim Booten oder während des Betriebs der Steuerung Probleme auftauchen. Hier werden in vielen Fällen Ausgaben gemacht, mit deren Hilfe die Problemursachen erkannt werden können.

# 3.11 Systemdaten erfassen und speichern

Als nächsten Schritt sollten Sie die Systemdaten für die benutzten Achskanäle im Programm mcfg editieren. Dazu gehen Sie wie folgt vor:

| 🎦 MCFG - Mcu3000.ini (Online Mode)                                                            |          |
|-----------------------------------------------------------------------------------------------|----------|
| <u>File Edit Window View Iools H</u> elp                                                      |          |
|                                                                                               |          |
| Im [FMT: SYSFILE MCU-3000 V2.50] C:\Mcu-G3\working\System.dat                                 | <b>_</b> |
| Axis Selection                                                                                |          |
| By Number: 1 V By Name: A1                                                                    |          |
| Axis specific parameters Motion parameters Motor specific parameters Dig. Inputs Dig. Outputs |          |
| General Parameters                                                                            |          |
| Axis-Name (sn): A1                                                                            |          |
| Motor-Type (mt): Servo                                                                        |          |
| Position Register display unit: 🔽 Display precision: 3 💌                                      |          |
| Mechanic Parameters                                                                           |          |
| Axis-Type (at): translatoric                                                                  |          |
| Encoder-Slits or Step-Pulses {slsp}: 1,00000000E+03 Slits 💌 per rev 💌                         |          |
| Gear Factor (gf): 1.00000000E+00 mm ▼ per rev                                                 |          |
|                                                                                               |          |
| 2: 0,0000000E+00 1: 0,0000000E+00 2: 0,0000000E+00                                            |          |
|                                                                                               |          |
| Supervisory Parameters                                                                        |          |
| Maximum position error {mpe}: 0.0000000E+00 mm                                                |          |
| Software limit left side (sll): 0.0000000E+00 mm NOFUNC                                       |          |
| Software limit right side (slr): 0.0000000E+00 mm NOFUNC                                      | <b>_</b> |
|                                                                                               |          |
|                                                                                               |          |
| MCFG - IDE for High                                                                           | 15:42    |
|                                                                                               |          |

Der Controller muss gebootet sein [Online Mode in Kopfzeile der mcfg.exe-Anwendung] mcfg.exe : [File] [System Data] die Achs-Parameter für die jeweiligen Achsen erfassen

Die neuen System-Daten mit dem Kommando [File][Save] abspeichern.

Beim Speichervorgang werden verschiedene Parameter im Flash-Speicher des MCU-G3-Controllers remanent abgelegt. Wurde zuvor ein Konfigurations-Fehler angezeigt, so darf dieser nach dem Speichern der Systemdaten nicht mehr angezeigt werden.

Der Speichervorgang ist nach wenigen Sekunden beendet.

### 3.12 Umgebungsvariable der Steuerungshardware

Im Umfeld der Steuerungshardware können Umgebungsvariable gesetzt werden um die Steuerungshardoder Software zu konfigurieren. Das Setzen und Rücksetzen dieser Umgebungsvariable erfolgt mit Hilfe des Konfigurationsprogramms fwsetup.exe bei nicht gebootetem System. Zum Setzen von Umgebungsvariablen wird im Datenfenster der Registerkarte "Monitor" die Anweisung:

#### set Variable Wert

eingegeben. Eine wiederholte Zuweisung überschreibt dabei eine vorhergegangene Zuweisung. Zum Löschen von Umgebungsvariablen wird die Anweisung:

#### unset Variable

eingegeben. Beachten Sie dass die Schreibweise dieser Anweisungen und Parameter unter Beachtung von Groß- und Kleinschreibung exakt richtig sein muss.

Der aktuelle Zustand der Umgebungsvariablen kann mit der Anweisung

set

(ohne Parameter) angezeigt werden. Wird die Anzeige nicht vollständig ausgegeben, so kann mit "Enter" jeweils eine weitere Umgebungsvariable angezeigt werden, bis alle Variable im Monitorfenster aufgelistet wurden.

Ab RWMOS.ELF V2.5.3.37 und ab mcug3.dll V2.5.3.25 können in der PCAP-Programmierumgebung Umgebungsvariable der Steuerung ausgelesen werden. Hierzu steht die Funktion getEnvStr() zur Verfügung. Ein Setzen von Umgebungsvariablen ist auf diese Weise nicht möglich.

<u>Wichtiger Hinweis</u>: Der Zustand der Umgebungsvariablen ist eine wichtige Eigenschaft der jeweiligen Steuerung und muss unbedingt dokumentiert werden. Zum Beispiel vor Einsatz eines Ersatzgerätes oder bei Reproduktion einer Anlage müssen die vom Benutzer vorgenommenen Eintragungen unbedingt wiederhergestellt werden. Zur Dokumentation kann der Bildschirminhalt über die Windows-Zwischenablage in eine Textverarbeitung übernommen werden.

Weiterhin ist zu beachten dass die Schreibweise dieser Anweisungen und Parameter unter Beachtung von Groß- und Kleinschreibung exakt richtig sein muss, ansonsten ist die Eintragung unwirksam.

Diese Umgebungsvariablen sind **nur in besonderen Fällen** notwendig. Bei normalen Servo- oder Schrittmotorachsen ist das Setzen von Umgebungsvariablen nicht notwendig. Durch falsche Verwendung dieser Variablen kann die Funktionsfähigkeit der Baugruppe beeinträchtigt werden.

#### 3.12.1 Die Umgebungsvariable MT (MotorType)

Mit Hilfe dieser Umgebungsvariablen kann die Steuerung an unterschiedliche Achssysteme angepasst werden. Die Zuordnung der Achse erfolgt durch anhängen des Achsenindex an MT (z.B. MT0). In nachfolgender Tabelle sind die unterschiedlichen Konfigurationsmöglichkeiten aufgelistet. Um eine Option auszuwählen muss der angegebene Wert der entsprechenden Systemvariable MT zugewiesen werden. **Wichtiger Hinweis:** Die folgenden Systemvariablen werden nur in besonderen Fällen benötigt (z.B. Verwendung eines SSI-Absolutwertgebers). Für Standardanwendungen mit Schrittmotorsystemen, Servosystemen und Inkrementalgebersystemen müssen und dürfen diese Variable nicht gesetzt werden.

| Tabell | e: Motortypes          |                                                                                                                                                                                                            |
|--------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wert   | Bezeichnung            | Beschreibung                                                                                                                                                                                               |
| 2      | SSI                    | Achse mit SSI-Enkoder Istwerterfassung und analoger Stellgrößenausgabe.                                                                                                                                    |
| 3      | INC PWM                | Achse mit PWM-Stellgrössensignal (RS-422) am Pulse-Ausgang<br>und Istwerterfassung per Inkrementalgeber. Das Richtungssignal<br>wird an den Ausgängen Sign ausgegeben.                                     |
| 4      | STEPPER SSI            | Achse mit SSI-Enkoder Istwerterfassung und Schrittmotor Stellgrößenausgabe.                                                                                                                                |
| 5      | ANALOG PWM             | Achse mit PWM-Stellgrössensignal (RS-422) am Pulse-Ausgang<br>und Istwerterfassung per Analog-Eingang. Das Richtungssignal wird<br>an den Ausgängen Sign ausgegeben.                                       |
| 6      | STEPPER NDX            | Bei diesem Achstyp wird das Schrittmotor-Richtungssignal an einem digitalen Ausgang (24V) ausgegeben. Die Pins NDX/Sign sind hier Eingänge und können für die Auswertung einer Indexspur verwendet werden. |
| 7      | ANALOG /<br>ANALOG     | Achse mit analoger Stellgrößenausgabe und Istwerterfassung per Analog-Eingang.                                                                                                                             |
| 8      | Enkoder Emulation      | Bei diesem Achstyp wird als Stellgröße ein inkrementelles Signal<br>ausgegeben (Enkodernachbildung). Hierzu muss die Achse in mcfg<br>als Schrittmotorachse definiert sein.                                |
| 9      | Piezo-Motor            | Dieser Motortyp ist optimiert zur Ansteuerung von Piezomotoren der Fa. Nano-Motion.                                                                                                                        |
| 10     | PSM                    | Achse mit digitaler Leistungsendstufe PSM-1150 über PSM-Bus.                                                                                                                                               |
| 11     | ENDAT 2.1              | Achse mit ENDAT-Enkoder (serielle Datenschnittstelle) <u>und</u> inkrementeller Istwerterfassung und analoger Stellgrößenausgabe.                                                                          |
| 12     | INC_PULSE              | Servoachse mit Puls-Richtungs-Schnittstelle und Inkrementalgeber-<br>Istwerterfassung. (Geregelter Schrittmotor)                                                                                           |
| 13     | VIRTUAL                | Virtuelle Achsen: Virtuelle Achsen können nicht zur Achsregelung, wohl aber für die Profilgenerator-Berechnung verwendet werden.                                                                           |
| 14     | GEOADD                 | Achstyp für grafische Darstellung von Bahndaten Virtueller Achsen                                                                                                                                          |
| 15     | UPDOWNSIGNAL<br>S      | Option zur Darstellung von Enkodersignalen eines Achskanals als UP- DOWN-Zählsignale.                                                                                                                      |
| 16     | ENDAT 2.2              | Achse mit ENDAT-Enkoder (serielle Datenschnittstelle) <u>ohne</u> inkrementelle Istwerterfassung und analoger Stellgrößenausgabe.                                                                          |
| 19     | ANA_SIGN               | Achse mit analoger Stellgrößenausgabe und Istwerterfassung per<br>Inkrementalgeber. Das Analoge Ausgangssignal ist immer positiv,<br>die Richtungsinformation wird per Digitalausgang ausgegeben.          |
| 20     | CI / ANALOG            | Achse mit analoger Stellgrößenausgabe und Istwerterfassung per Common-Integer-Variable (CI).                                                                                                               |
| 21     | CD / ANALOG            | Achse mit analoger Stellgrößenausgabe und Istwerterfassung per Common-Double-Variable (CD).                                                                                                                |
| 22     | STEPPER /<br>ENDAT 2.2 | Achse mit Schritt-Richungs-Ausgang und ENDAT 2.2<br>Enkoderverifikation                                                                                                                                    |
| 23     | ETM                    | Kundenspezifische Sonderversion mit Istwerterfassung per<br>Impulsdauermessung                                                                                                                             |

| Wert | Bezeichnung          | Beschreibung                                                                                                                                                                                                                                                                                                                                                  |
|------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24   | ANA_SIGN_SSI         | Achse mit analoger Stellgrößenausgabe und Istwerterfassung per SSI-Absolutwertgeber. Das Analoge Ausgangssignal ist immer positiv, die Richtungsinformation wird per Digitalausgang ausgegeben.                                                                                                                                                               |
| 25   | ANA_SIGN<br>ENDAT2_2 | Achse mit analoger Stellgrößenausgabe und Istwerterfassung per<br>ENDAT 2.2 - Absolutwertgeber. Das Analoge Ausgangssignal ist<br>immer positiv, die Richtungsinformation wird per Digitalausgang<br>ausgegeben.                                                                                                                                              |
| 26   | SSI_PULSE            | Servoachse mit Puls-Richtungs-Schnittstelle und SSI-<br>Absolutwertgeber-Istwerterfassung. (Geregelter Schrittmotor)                                                                                                                                                                                                                                          |
| 27   | ENDAT22_PULSE        | Servoachse mit Puls-Richtungs-Schnittstelle und ENDAT 2.2-<br>Absolutwertgeber-Istwerterfassung. (Geregelter Schrittmotor)<br>In Vorbereitung!                                                                                                                                                                                                                |
| 28   | INC_PULSE_NDX        | Servoachse mit Puls-Richtungs-Schnittstelle und Inkrementalgeber-<br>Istwerterfassung. (Geregelter Schrittmotor). Bei diesem Achstyp wird<br>entgeben Motortyp 12 das Schrittmotor-Richtungssignal an einem<br>digitalen Ausgang (24V) ausgegeben. Die Pins NDX/Sign sind hier<br>Eingänge und können für die Auswertung einer Indexspur verwendet<br>werden. |
| 29   | NDX_DIAG             | Spezialversion für Diagnosezwecke.                                                                                                                                                                                                                                                                                                                            |
| 30   | ENDAT_SNIFFER        | Passiver Abgriff an einem Endat 2.2 Istwertkanal. Nur mit entsprechender Betriebssystem-Version verfügbar.                                                                                                                                                                                                                                                    |

#### Beispiel: set MT2 6

#### 3.12.1.1 Motortyp SSI (2)

Bei diesem Motortyp kann ein SSI-Absolutwertgeber zur Istwerterfassung verwendet werden. Dieser Typ ist gültig für Stepper und Servo-Achsen. Für die Konfiguration der SSI Parameter können weiterhin die Umgebungsvariable SSIF? und SSIP? gesetzt werden. Diese müssen achsenspezifisch gesetzt werden. Das Zeichen "?" stellt den Achsindex 0...7 dar.

Mit SSIF kann die Clockfrequenz zum Auslesen des Gebers heruntergesetzt werden. Als Wert gibt man die gewünschte Frequenz in Hz zwischen 100kHz und 4MHz an. Defaultwert ist 500 kHz. Bei langen Übertragungsleitungen muss die Frequenz i.A. heruntergesetzt werden.

Durch Belegen der Umgebungsvariablen SSIBIN? mit dem Wert 1, können Geberachsen auf Binärcode eingestellt werden. Default ist Gray-Code. Siehe hierzu auch Kapitel 5.2.7.1.

Weitere Hinweise zur Konfiguration von SSI\_Absolutwertgebern:

- Die Einheit bei der Enkoderauflösung in der Systemdatei muss bei SSI Gebern normalerweise auf Pulses eingestellt werden (Bei Slits wird der elektronischen Vervierfachung von Inkrementalgebersignalen Rechnung getragen).
- Die Anzahl SSI Impulse die mit SSIP angegeben wird ist um 2 größer als die Anzahl der Nutzdatenbits (Default für SSIP ist 26 geeignet für 24 bit Geber)

#### 3.12.1.2 Motortyp INC PWM (3)

Dieser Motortyp hat einen Inkrementalgeber zur Istwerterfassung und ein pulsweitenmoduliertes Ausgangssignal (PWM) als Stellgröße. Der PWM-Ausgang hat eine Grundfrequenz von 20kHz und eine Auflösung von 3500 Stufen bei der MCU-3000 [3333 Stufen bei der MCU-3100] zzgl. Vorzeichen und wird als RS-422 Signal an den Pins Servo/Puls+ und AGND/Puls- zur Verfügung gestellt. Für diese Option ist eine spezielle Firmware RWMOS.ELF erforderlich. In mcfg muss diese Achse als SERVO eingestellt werden. Diese Option ist nicht möglich bei Achsen, die auch als STEPPER definiert werden können.

#### 3.12.1.3 Motortyp STEPPER SSI (4)

Alternative Methode um eine Stepperachse mit SSI-Enkoderrückführung zu definieren.

#### 3.12.1.4 Motortyp ANALOG PWM (5)

Dieser Motortyp hat einen Analogeingang zur Istwerterfassung und ein pulsweitenmoduliertes Ausgangssignal (PWM) als Stellgröße. Der PWM-Ausgang hat eine Grundfrequenz von 20kHz und eine Auflösung von 3500 Stufen bei der MCU-3000 [3333 Stufen bei der MCU-3100] zzgl. Vorzeichen. Für diese Option ist eine spezielle Firmware RWMOS.ELF erforderlich. In mcfg muss diese Achse als SERVO eingestellt werden.

Diese Option ist mit Einschränkungen möglich bei Achsen, die auch als STEPPER definiert werden können: Die Achsen dürfen keine SSI-Option beinhalten RWMOS.ELF muss die Option optionSTPPWM enthalten PWM und Richtungsausgang sind die Pins CHA-CLKSSI und CHB-DATSSI

#### 3.12.1.5 Motortyp STEPPER NDX (6)

Bei diesem Motortyp wird das Richtungssignal nicht an den RS-422-Ausgängen Sign+ und Signausgegeben, sondern per Digital-Ausgang. Der jeweilige Digitalausgang muss in mcfg (ab V2.5.3.3) konfiguriert werden durch Anwahl der Option "SIGN SPEC". Dadurch kann bei Verwendung der Enkodereingänge auch die Nullspur des Enkoders angeschlossen und ausgewertet werden. Diese Option ist verfügbar ab RWMOS.ELF V2.5.3.3.

#### 3.12.1.6 Motortyp ANALOG / ANALOG (7)

Motortyp mit analoger Stellgrößenausgabe und analoger Istwerterfassung. Hierzu kann auch die Umgebungsvariable FBCH? (Abschnitt 3.12.6) gesetzt werden, um einer Achse einen analogen Istwertkanal zuzuordnen.

#### 3.12.1.7 Motortyp Enkoder Emulation (8)

Stepper Motortyp, die Stellgröße wird jedoch nicht als Schritt-/Richtungssignal sondern als emuliertes Inkrementalgebersignal ausgegeben. Für diese Option ist eine spezielle Firmware RWMOS.ELF erforderlich.

#### 3.12.1.8 Motortyp Piezo-Motor (9)

Bei diesem Motortyp ist der Regler angepasst für Piezomotoren der Fa. Nano-Motion. Die Filterparameter kp, ki, kd und kfcv haben gleiche Bedeutung wie beim Standardregler, wobei der Integralanteil anders behandelt wird. Im Reglerparameter kpl kann ein Amplitudenwert (Spitze/Spitze) in digits angegeben werden. Dieser wird der Stellgröße mit der halben Abtastfrequenz überlagert. Weiterhin wird der im Zielfenster eingetragene Positionswert verwendet für eine Reglerstrukturumschaltung. Deshalb sollte hier der Wert eingetragen werden, der als Genauigkeit unbedingt erreicht werden muss.

Weitere wichtige Parameter bei diesem Motortyp sind die Kompensationsspannungen mcpcp und mcpcn.

#### 3.12.1.9 Motortyp PSM (10)

Bei diesem Motortyp handelt es sich um einen Motor, welcher über eine digitale Leistungsendstufe am seriellen Feldbus PSM-Bus angesteuert wird. Hierzu steht z.Zt. das Modul PSM-1150 zur Verfügung

welches zur Ansteuerung von bürstenbehafteten Gleichstrommotoren in der Leistungsklasse bis ca. 12A (Nennstrom) / 60V konzipiert wurde.

#### 3.12.1.10 Motortyp ENDAT (11 + 16)

Bei diesem Motortyp kann ein ENDAT- Absolutwertgeber oder Inkrementalgeber zur Istwerterfassung verwendet werden. Hierbei muss zwischen den Endat-Versionen 2.1 und 2.2 (MT = 11 bzw. MT = 16) unterschieden werden. Dieser Typ ist z.Zt. nur verfügbar für Servo-Achsen. Für die zusätzliche Konfiguration von ENDAT-Parametern kann die Umgebungsvariable ENDATF gesetzt werden. Mit ENDATF kann die Clockfrequenz zum Lesen und Beschreiben des Gebers projektiert werden. Als Wert gibt man die gewünschte Frequenz in Hz zwischen 100kHz und 2MHz an. Defaultwert ist 500 kHz. Bei langen Übertragungsleitungen muss die Frequenz i.A. heruntergesetzt werden. Da jede ENDATF (z.B. ENDATF3) angehängt werden.

#### 3.12.1.11 Motortyp INC\_PULSE (12)

Bei diesem Motortyp erfolgt eine Lageregelung wie bei Standard-Servosystemen. Die Variable Motor-Type {mt} in mcfg muß auf SERVO eingestellt sein. Der Frequenzbereich der Impulsausgabe ist standardmäßig +/-2MHz. Mit Hilfe der Variablen {mcpmax} und {mcpmin} kann der Frequenzbereich begrenzt werden. Die Einheit dieser Variable ist 200kHz. Bei Ausgabe eines Sollwertsprunges (OL Response) wird die Ausgabefrequenz ebenfalls in der Einheit 200kHz angegeben.

Die Einstellung des Lagereglers muß nach den gleichen Kriterien erfolgen wie bei einem drehzahlgeregelten System.

<u>Hinweis:</u> Eine Konfiguration einer Achse auf diesen Motortyp kann nur erfolgen, wenn in RWMOS für die entsprechende Achse die Ressourcen Inkrementalgeberauswertung und Impulsausgabe verfügbar sind.

#### 3.12.1.12 Motortyp VIRTUAL(13)

Mit Hilfe virtueller Achsen kann die Bahngeschwindigkeitsberechnung in einem kartesischen Koordinatensystem vorgenommen werden. Die realen Achse können dann an dieser Interpolation als Non-Feed-Rate Achsen teilnehmen. Somit ist bei Achssystemen mit nichtkartesischem Aufbau die Konstanz der Bahngeschwindigkeit gewährleistet.

Die maximale Anzahl Virtueller Achsen ist in RWMOS.ELF fest einkompiliert, ohne Bezug zur Hardware.

Dieser Wert kann in der RWMOS Boot Meldung in fwsetup ermittelt werden. Die tatsächliche Anzahl der Virtuellen Achsen wird dann mit der Umgebungsvariablen VirtualAxis eingestellt.

Mit Virtuellen Achsen ist es z.B. möglich ein System mit acht realen Achsen und drei zusätzlichen virtuellen Achsen zu realisieren. Der Achstyp VIRTUAL wird nicht manuell vorgegeben, sondern ist eine interne Konstante die automatisch den Virtuellen Achsen zugewiesen wird.

Virtuelle Achsen sind dann die Achsen, mit einem höheren Index als NumberAxis.

#### 3.12.1.13 Motortyp GEOADD (14)

Mit Hilfe dieses Achstyps können die Bahndaten virtueller Achsen in der grafischen Systemanalyse sichtbar gemacht werden. Somit lässt sich die Bahngeschwindigkeit und der Verfahrweg von Virtuellen Achsen grafisch darstellen. Dieser Achstyp ist nur für Diagnosezwecke verfügbar.

#### 3.12.1.14 Motortyp UPDOWNSIGNALS (15)

Dies Option ist nur mit einer geeigneten RWMOS.ELF Betriebssystemvariante nutzbar.

#### 3.12.1.15 Motortyp ANA\_SIGN (19)

Achse mit analoger Stellgrößenausgabe und Istwerterfassung per Inkrementalgeber (ähnlich Standard Servo Achse). Das Analoge Ausgangssignal ist immer positiv, die Richtungsinformation wird per Digitalausgang ausgegeben. Hierzu kann für positive Stellgrößenausgabe eine Umgebungsvariable SIGNOUTPOS? und für negative Stellgrößenausgabe eine Umgebungsvariable SIGNOUTNEG? definiert werden, wobei das angehängte "?" den Index der Achse darstellt. Im Wert von SIGNOUT... wird jeweils der digitale Ausgang bitcodiert angegeben (Ausgang 1 = 1, Ausgang 2 = 2, Ausgang 3 = 4 ... Ausgang 8 = 128 usw.). Hierbei können auch keine oder mehrere Ausgänge angegeben werden.

Beispiel: 2. Achse, Positive Stellgröße = Ausgang 4, negative Stellgrößenanzeige wird nicht benötigt set MT1 19 set SIGNOUTPOS1 8 set SIGNOUTNEG1 0

In diesem Fall kann SIGNOUTNEG1 auch undefiniert bleiben.

#### 3.12.1.16 Motortyp CI / ANALOG und CD / ANALOG (20 + 21)

Motortyp mit analoger Stellgrößenausgabe und Istwerterfassung per CI- (MT 20) bzw. CD-Variable (MT 21). Defaultmässig wird jeder Achse der Inhalt der Common-Variablen mit dem Index der entsprechenden Achse zugeordnet.. Um einer Achse eine andere Common Variable zuzuordnen, kann die Umgebungsvariable FBCH? (Abschnitt 3.12.6) gesetzt werden.

#### 3.12.1.17 Motortyp STEPPER\_ENDAT2\_2 (22)

#### 3.12.1.18 Motortyp ETM (23)

Applikationsspezifischer Motortyp mit einer Pulsdauermessung zur Istwerterfassung.

#### 3.12.1.19 Motortyp ANA\_SIGN\_SSI (24)

Achse mit analoger Stellgrößenausgabe und Istwerterfassung per SSI Absolutwertgeber (ähnlich SSI Typ 2 und ANA\_SIGN Typ 19). Das Analoge Ausgangssignal ist immer positiv, die Richtungsinformation wird per Digitalausgang ausgegeben. Hierzu kann für positive Stellgrößenausgabe eine Umgebungsvariable SIGNOUTPOS? und für negative Stellgrößenausgabe eine Umgebungsvariable SIGNOUTNEG? definiert werden, wobei das angehängte "?" den Index der Achse darstellt. Im Wert von SIGNOUT... wird jeweils der digitale Ausgang bitcodiert angegeben (Ausgang 1 = 1, Ausgang 2 = 2, Ausgang 3 = 4 ... Ausgang 8 = 128 usw.). Hierbei können auch keine oder mehrere Ausgänge angegeben werden.

Beispiel: 2. Achse, Positive Stellgröße = Ausgang 4, negative Stellgrößenanzeige wird nicht benötigt set MT1 24 set SIGNOUTPOS1 8 set SIGNOUTPEG1 0

In diesem Fall kann SIGNOUTNEG1 auch undefiniert bleiben.

#### 3.12.1.20 Motortyp ANA\_SIGN\_ENDAT2\_2 (25)

Achse mit analoger Stellgrößenausgabe und Istwerterfassung per ENDAT 2.2 Absolutwertgeber (ähnlich ENDAT 2.2 Typ 16 und ANA\_SIGN Typ 19). Das Analoge Ausgangssignal ist immer positiv, die Richtungsinformation wird per Digitalausgang ausgegeben. Hierzu kann für positive Stellgrößenausgabe eine Umgebungsvariable SIGNOUTPOS? und für negative stellgrößenausgabe eine Umgebungsvariable SIGNOUTNEG? definiert werden, wobei das angehängte "?" den Index der Achse darstellt. Im Wert von SIGNOUT… wird jeweils der digitale Ausgang bitcodiert angegeben (Ausgang 1 = 1, Ausgang 2 = 2, Ausgang 3 = 4 ... Ausgang 8 = 128 usw.). Hierbei können auch keine oder mehrere Ausgänge angegeben werden.

Beispiel: 2. Achse, Positive Stellgröße = Ausgang 4, negative Stellgrößenanzeige wird nicht benötigt set MT1 24 set SIGNOUTPOS1 8 set SIGNOUTNEG1 0

In diesem Fall kann SIGNOUTNEG1 auch undefiniert bleiben.

#### 3.12.1.21 Motortyp SSI\_PULSE (26)

Bei diesem Motortyp erfolgt eine Lageregelung wie bei Standard-Servosystemen jedoch mit Schritt-Richtungsausgang. Die Variable Motor-Type {mt} in mcfg muß auf SERVO eingestellt sein. Der Frequenzbereich der Impulsausgabe ist standardmäßig +/-2MHz. Mit Hilfe der Variablen {mcpmax} und {mcpmin} kann der Frequenzbereich begrenzt werden. Die Einheit dieser Variable ist 200kHz. Bei Ausgabe eines Sollwertsprunges (OL Response) wird die Ausgabefrequenz ebenfalls in der Einheit 200kHz angegeben.

Die Einstellung des Lagereglers muß nach den gleichen Kriterien erfolgen wie bei einem drehzahlgeregelten System.

<u>**Hinweis:**</u> Eine Konfiguration einer Achse auf diesen Motortyp kann nur erfolgen, wenn in RWMOS für die entsprechende Achse die Ressourcen SSI-Absolutwertgeber und Impulsausgabe verfügbar sind. Dieser Motortyp ist erst ab RWMOS V2.5.3.132 verfügbar.

#### 3.12.2 Die Umgebungsvariable NumberAxis

Mit dieser Umgebungsvariable wird die Achsanzahl der Steuerung gesetzt. Der Defaultwert ist 3. Dieser Wert wird normalerweise werksseitig gesetzt und darf nur auf Werte geändert werden, die auch von der Hard- und Softwarekonfiguration der Steuerung unterstützt werden.

#### 3.12.3 Die Umgebungsvariable SampleTime

Mit Hilfe dieser Umgebungsvariable kann die Abtastzeit (Regelzykluszeit und Interpolationszykluszeit) der Steuerung in Mikrosekunden gesetzt werden. Werte hierfür können zwischen 100 und 5000 liegen. Defaultwert ist 1280. Dieser Wert darf nur auf Werte geändert werden, die auch von der Hard- und Softwarekonfiguration der Steuerung erreicht werden können. Realistische Werte beginnen ca. ab 400. Weiterhin ist zu beachten, dass i.A. mit Änderung der Abtastzeit auch die Filterparameter der Lageregler angepasst werden müssen, insbesondere die Vorsteuerkoeffizienten kfcv und kfca.

Falls diese Einstellung für die Applikation erforderlich ist, sollte Diese auch im Applikationsprogramm überprüft werden, um Fehlfunktionen beim Nachbau der Anlage oder im Servicefall zu verhindern, da diese Einstellung eine Geräteoption ist, die im Flash-Speicher der PCI Karte hinterlegt wird. Die Überprüfung der Abtastzeit kann mit der DLL-Funktion rdSampleTime() erfolgen. Der Wert von Umgebungsvariablen generell kann mit der DLL-Funktion getEnvStr () erfolgen.

#### 3.12.4 Die Umgebungsvariable SZTSK?

Mit dieser Umgebungsvariablen kann die Programmspeichergröße der Taskumgebung in Bytes taskspezifisch verändert werden. Für das ? muss hier die Task-Nummer (0..3) eingesetzt werden. Defaultwert ist 100.000 Bytes.

Beispiel:

set SZTSK3 1000000

#### 3.12.5 MCU-3000 / APCI-8001: Konfiguration der Analogen Eingangsspannungsbereiche

Mit der Umgebungsvariablen MAX1270CH? kann der Eingangsspannungsbereich vorhandener Analog-Eingänge kanalspezifisch konfiguriert werden. Gleichzeitig wird durch Setzen dieses Wertes ein Analogeingangskanal aktiviert. Für das ? muss hier der Index des Analogkanals (0..7) eingesetzt werden.

| Wert | Spannungsbereich       |
|------|------------------------|
| 5VU  | 5V unipolar (0V+5V)    |
| 5VB  | 5V bipolar (-5V+5V)    |
| 10VU | 10V unipolar (0V+10V)  |
| 10VB | 10V bipolar (-10V+10V) |

Beispiel:

set MAX1270CH0 5VU

Weitere Informationen zur Verwendung von Analogeingängen sind im Optionenhandbuch OHB zu finden.

#### 3.12.6 MCU-3100 / APCI-8008: Konfiguration der Analogen Eingangsspannungsbereiche

Mit der Umgebungsvariablen **AD7606RNG** kann der Eingangsspannungsbereich vorhandener Analog-Eingänge konfiguriert werden. Hierbei ist die Konfiguration nicht kanalspezifisch, sondern nur gemeinsam für alle analogen Eingänge möglich. Eine unipolare Betriebsart, wie bei der MCU-3000 gibt es bei der MCU-3100 nicht mehr. Dafür haben die Analogeingänge nun eine Auflösung von 16 bit.

| Wert | Spannungsbereich       |          |
|------|------------------------|----------|
| 5VB  | 5V bipolar (-5V+5V)    |          |
| 10VB | 10V bipolar (-10V+10V) | *default |

Beispiel:

set AD7606RNG 5VB

Weitere Informationen zur Verwendung von Analogeingängen sind im Optionenhandbuch OHB zu finden.

Bei der MCU-3100 gibt es mit der Umgebungsvariablen **AD7606OS** noch eine weitere Einstellmöglichkeit: Die Analogeingänge haben die Option für ein Hardware-Oversampling, d.h. die Eingangsspannung wird mehrfach eingelesen und es wird automatisch eine Mittelwertbildung durchgeführt. Folgende Werte können programmiert werden:

| Wert | Oversampling-Faktor | Wandlungszeit / µs |
|------|---------------------|--------------------|
| 0    | kein Oversampling   | 5 *default         |
| 1    | 2                   | 10                 |
| 2    | 4                   | 20                 |
| 3    | 8                   | 40                 |
| 4    | 16                  | 80                 |
| 5    | 32                  | 160                |
| 6    | 64                  | 320                |

Die Programmierung anderer Werte bewirkt ein Abschalten des Oversampling. Defaultwert ist 0.

Beispiel:

set AD7606OS 6

#### 3.12.7 Die Umgebungsvariable FBCH?

Feedback-Channel: Mit Hilfe dieser Umgebungsvariablen kann ein vorhandener Analogeingang einem analogen Istwertkanal zugeordnet werden. Diese Variable ist nur für Achsen mit MotorTyp "ANALOG PWM" (Kapitel 3.12.1.4), "ANALOG / ANALOG" (Kapitel 3.12.1.6), "CI\_ANALOG" und "CD\_ANALOG" (Kapitel 3.12.1.16) von Bedeutung.

FBCHx y: x ist der Index der Achse welcher der Kanal zugeordnet wird, y ist der Index des Analogeingangs (0...7) bzw. der Common-Variablen (0...999) welcher als FeedbackChannel gelesen werden soll. Wenn diese Variable nicht gesetzt ist wird jedem Achskanal 0..7 der jeweilige Analog-Eingangskanal 0..7 zugeordnet.

Beispiel:

set FBCH0 0

# 3.13 Besonderheiten bei den Systemparametern für Servo- und Schrittmotorachsen

Zu beachten sind nachfolgend aufgelisteten Systemparameter die in der Systemdatei system.dat mit Hilfe der mcfg.exe-Anwendung entsprechend gesetzt werden müssen.

| Betriebsart   | Parameter / Seite                                       | Wert / Bedeutung                                                                                                                                                                                        |
|---------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Servo-Motor   | Motor-Type {mt} /<br>Motion Parameters                  | Servo / Betriebsartauswahl                                                                                                                                                                              |
|               | Encoder-Slits or Step-<br>Pulses /<br>Motion Parameters | Slits / Striche (elektronische Vervierfachung wird<br>berücksichtigt) Slits wird bei Inkrementalenkodern<br>verwendet. Bei Schrittsignalausgabe oder SSI-<br>Absolutwertgebern ist Pulses zu verwenden. |
| Stepper-Motor | Motor-Type {mt} /<br>Motion Parameters                  | Stepper / Betriebsartauswahl                                                                                                                                                                            |
|               | Encoder-Slits or Step-<br>Pulses /<br>Motion Parameters | Pulses / Schritte (keine elektronische<br>Vervierfachung)                                                                                                                                               |
|               | Filter-Parameter {kp} /<br>Motor specific<br>Parameters | 0,04 (wird vom System gesetzt) / ein anderer Wert<br>führt zu instabilem Regelverhalten                                                                                                                 |
|               |                                                         | <u>Achtung</u> : {kp} kann ab <i>mcfg.exe</i> -Version<br>2.5.0.45 bei Schrittmotoren nicht mehr editiert<br>werden! Sie benötigen die <i>rwmos.elf</i> - Firmware<br>Version 2.5.0.4 oder später.      |

Wie geht es jetzt weiter?

Sofern Sie bei diesem Punkt angelangt sind, ohne dass noch Fehler auftauchen, ist der MCU-G3-Controller erfolgreich eingerichtet und arbeitsbereit. Zum Abschluss der Installation könnten Sie jetzt noch folgende Schritte in der mcfg.exe - Anwendung ausführen:

[File] [Dialog Functions][Show Axis Status] zum Anzeigen der aktuellen Positions-Ist und Sollwerte nebst Achsenstatus-Informationen

[File] [Dialog Functions][Show Digital Inputs / Status] zum Anzeigen der digitalen Eingänge, Achsenstatus und Interface-Status-Informationen

[File] [Dialog Functions][Edit Digital Outputs] zum Setzen bzw. Rücksetzen der Digital-Ausgänge

[File] [Motion Tools] zum manuellen Verfahren der Antriebsachsen. Hierbei ist zu beachten, dass auch bei einer Schrittmotorachse der [Close Loop] - Button betätigt werden muss, bevor die Achse mit Hilfe der [Jog Start], [Jog Stop] oder [Jog Back] – Buttons manuell verfahren werden kann. Dies ist erforderlich, da auch Schrittmotorachsen über einen internen Regelalgorithmus geführt werden.

Sofern Sie mit Ihren Einstellungen zufrieden sind kann jetzt mit der Erstellung des PC-Anwendungsprogramms begonnen werden. Hierzu finden Sie Programmbibliotheken und Beispielprogramme im Unterverzeichnis <u>Unterverzeichnis Drivers</u>, Libraries and Examples auf der MCU-G3 TOOLSET CD-Rom.

### 3.14 Zusätzliche Installationshinweise bei Windows NT

Sofern Probleme welche beim Allokieren von physischem Speicher unter Windows NT auftreten, werden diese durch explizite Fehlermeldungen der MCU-G3-Toolset-Software am Bildschirm angezeigt. In diesem Fall muss ein Wert in der Registrierungsdatenbank Ihres PC verändert werden.

Hierzu gehen Sie wie folgt vor:

Starten Sie als Administrator das Windows-Dienstprogramm regedit z.B. wie folgt über Start, Ausführen, regedit.

Verändern Sie den Schlüssel HKEY\_LOCAL\_MACHINE\System\CurrentControlSet\Control\Session Manager\Memory Management\SystemPages der normalerweise den Wert 0 haben sollte auf den Wert 10000 hex oder höher.

Booten Sie den PC neu

# 3.15 Aktualisierung der MCU-G3-Flash-Firmware (PMON)

Sofern ein Update der Flash-Firmware des MCU-G3-Controllers notwendig ist:

fwsetup-Anwendung starten

Die Seite [Pmon Download] öffnen

Die Date pmon.elf aus dem Unterverzeichnis Firmware und System.dat Files\Pmon auswählen

Nach der Auswahl wird das Flash des MCU-G3-Controllers zunächst gelöscht und im Anschluss die entsprechenden Daten aus dem PMON.ELF-File geschrieben.

Bitte Achten Sie auf Fehlermeldungen bei der Programmierung.

Wählen Sie bitte die Seite [Monitor]

Drücken Sie bitte den [Soft Reset]-Button

Der Monitor muß sofort neue Bildschirmmeldungen anzeigen

# 3.16 Falls Probleme auftauchen

Supportadresse: <u>support@rw-gmbh.de</u>

Telefonsupport: +49-7824-66280

# 4 Installation der MCU-G3 im PC

Benötigt wird: ein MCU-G3-Controller MCU-3000, MCU-6000 oder MCU-3100 eine MCU-G3 TOOLSET CD-Rom

# 4.1 MCU-G3 Controller einbauen

Schalten Sie den PC aus

Entladen Sie sich

Führen Sie die Karte senkrecht von oben in den gewählten PCI-Steckplatz ein (Achten Sie darauf, dass Sie die Goldkontakte nicht berühren, bei Bedarf können die Kontakte zuvor mit Alkohol gereinigt werden)

Schalten Sie den PC ein und starten Sie Windows (95, 98, Me, NT 4.0 oder 2000) Im Zielsystem (PC-Motherboard) müssen die Versorgungsspannung 3,3V und 5V am PCI-Bus anliegen. Das kann anhand nachfolgend aufgelisteter Diagnose-LED nach dem Einschalten des PC erkannt werden. Alle Diagnose-LED befinden sich auf der Rückseite (Lötseite) der MCU-G3 Controller am oberen Kartenrand. Es handelt sich hierbei um kleine SMD (oberflächenmontierte) Leichtdioden. Sehen Sie hierzu auch den Teilbestückungsdruck auf der nächsten Seite.

| Gerät               | Leucht-Diode | Funktion                                                                                                                                       |
|---------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| MCU-6000, APCI-8401 | D1           | PC-Versorgungsspannung 5V. (1. LED direkt am Kartenhalter) Muss leuchten!                                                                      |
|                     | D5           | PC-Versorgungsspannung 3,3V an (2. LED vom Kartenhalter aus gesehen) Muss leuchten!                                                            |
|                     | D13          | Zeigt durch Blinken an, dass das<br>Monitorprogramm läuft (1. LED an der vom KH<br>abgewandten Seite) Muss beim Einschalten des<br>PC blinken! |
| MCU-3000, APCI-8001 | D27          | PC-Versorgungsspannung 5V. (1. LED vom Kartenhalter aus gesehen) Muss leuchten!                                                                |
|                     | D28          | PC-Versorgungsspannung 3,3V. (2. LED vom Kartenhalter aus gesehen) Muss leuchten!                                                              |
|                     | D32          | Zeigt durch Blinken an, dass das<br>Monitorprogramm läuft (1. LED an der vom KH<br>abgewandten Seite) Muss beim Einschalten des<br>PC blinken! |
| MCU-3100, APCI-8008 | D50          | PC-Versorgungsspannung 5V. (1. LED vom Kartenhalter aus gesehen) Muss leuchten!                                                                |
|                     | D51          | Interne-Versorgungsspannung 3,3V. (2. LED vom Kartenhalter aus gesehen) Muss leuchten!                                                         |
|                     | D57          | Zeigt durch Blinken an, dass das<br>Monitorprogramm läuft (1. LED an der vom KH<br>abgewandten Seite) Muss beim Einschalten des<br>PC blinken! |

| Gerät     | Leucht-Diode | Funktion                                     |
|-----------|--------------|----------------------------------------------|
| MCU-3400C | D34          | PC-Versorgungsspannung 5V. (1. LED vom       |
| CPCI-8004 |              | Kartenhalter aus gesehen) Muss leuchten!     |
|           | D35          | PC-Versorgungsspannung 3,3V. (2. LED vom     |
|           |              | Kartenhalter aus gesehen) Muss leuchten!     |
|           | D39          | Zeigt durch Blinken an, dass das             |
|           |              | Monitorprogramm läuft (1. LED an der vom KH  |
|           |              | abgewandten Seite) Muss beim Einschalten des |
|           |              | PC blinken!                                  |

Bei den meisten PC-Systemen werden während des Bootvorgangs die Ergebnisse des PCI-Plug and Play-Bios angezeigt. Dort sollte ein MCU-G3-Controller mit folgender Identität (MCU-3000 / MCU-6000) aufgelistet werden: **Vendor-ID : 11AB (hex) und Device-ID: 4611 (hex)** Windows 95, 98, Me und Windows 2000 erkennt die MCU-G3 Karte automatisch. Zur Installation benötigen Sie jetzt die MCU-G3 Toolset CD-Rom. Dort finden Sie im Unterverzeichnis <u>inf</u> die notwendige INF-Datei zur Installation der Karte. Sie müssen den MCU-G3 Controller ggf. als <u>Multifunktionskarte</u> registrieren.



#### Teil-Bestückungsdruck (Lötseite) der MCU-3000

#### 4.1.1 Installation unter W98

Wenn die Karte im Gerätemanager mit Ausrufezeichen erscheint, auswählen mit rechter Maustaste und Eigenschaften – Registerkarte: Treiber – Treiber aktualisieren anwählen.

Man kann auch das fehlerhafte Gerät im Gerätemanager löschen und dann "Aktualisieren" anwählen. Das Gerät wird dann als "PCI Memory Controller" erkannt. Nun folgende Vorgehensweise einhalten:

Eine Liste der Treiber in einem bestimmten Verzeichnis anzeigen …" auswählen Multifunktionskarte auswählen Diskette anwählen Nun mcug3.inf selektieren (z.B. auf CD) richtiges Produkt auswählen (z.B. MCU-3000) Nun kommt unter Win98 die Meldung "Der Treiber wurde nicht für die gewählte Hardware geschrieben …" usw. Dies kommt daher, dass Win98 die Sub-Vendor ID der Karte überschreibt und deshalb nicht erkennt. Diese Meldung mit OK quittieren Danach mit Ja bestätigen und installieren.

Nun muss das Gerät fehlerfrei unter "Multifunktionskarten" im Gerätemanager eingetragen sein.

Weiterhin ist zu beachten, daß für Windows 98 der Miniport-Treiber V7.01b (CD Unterverzeichnis V9x) verwendet werden muß. Es wird dringend angeraten eine neuere Windows-Version als Windows 9x zu verwenden.

# 5 Konfiguration und Verdrahtung der MCU-G3

### 5.1 Einbau, Inbetriebnahme und Tausch

Bei Neu-Inbetriebnahme oder bei Tausch müssen verschiedene Systemdaten aus der Systemdatei *system.dat* auf der MCU-G3 gespeichert werden. Dieses wird mit dem Hilfsprogramm *mcfg.exe* im Menü [Save Changes] durchgeführt. Sollten die abgespeicherten Informationen nicht mit den in der Systemdatei *system.dat* gespeicherten Informationen konform sein, so wird das *cef*-Flag gesetzt.

# 5.2 Umgebung

Die MCU-G3 wurde speziell für den industriellen Einsatz konzipiert. Alle Eingänge stehen potentialfrei zur Verfügung. Die Ausgangssignale sind von der Logik-Versorgung ebenfalls galvanisch getrennt und haben ein gemeinsames Massebezugspotential. Somit werden Störungen von der Peripherieelektronik nahezu vollständig unterdrückt.

Da die MCU-G3 mit einer Mikroprozessorbaugruppe ausgestattet ist, sollte der Einbau in elektromagnetisch stark gestörter Umgebung vermieden werden. Ansonsten muß mit einem unkontrollierten Prozessverhalten des Mikrocontrollers gerechnet werden. In diesem Fall ist damit zu rechnen, daß die Watchdoglogik der MCU-G3-Baugruppe anspricht und einen Hardware-Reset verursacht.

Hardware-Schnittstellen, Anschlussbelegungen

Die Peripherie-Elektronik wird je nach Ausbaustufe mit Hilfe eines 50poligen SUB-D-Steckverbinders (X1) an der MCU-3000 / MCU-3100 angeschlossen. Zur schnellen und einfachen Verdrahtung kann auch optional ein Verbindungskabel RK-3000 und Klemmenplatine PX-3000 eingesetzt werden. Der Anschluss der MCU-3400C erfolgt über einen 78poligen SUB-D Steckverbinder.

| Pin | Name             | Gruppe                                                                      |
|-----|------------------|-----------------------------------------------------------------------------|
| 1   | SERVO1 / PULSE1+ | Sollwert 1 / Stepper 1                                                      |
| 2   | AGND1 / PULSE1-  | Sollwert 1 / Stepper 1                                                      |
| 3   | CHA1+ / CLKSSI1+ | Istwert 1                                                                   |
| 4   | CHA1- / CLKSSI1- | Istwert 1                                                                   |
| 5   | CHB1+ / DATSSI1+ | Istwert 1                                                                   |
| 6   | CHB1- / DATSSI1- | Istwert 1                                                                   |
| 7   | NDX1+ / SIGN1+   | Istwert 1 / Stepper 1                                                       |
| 8   | NDX1-/SIGN1-     | Istwert 1 / Stepper 1                                                       |
| g   | 11               | Digital-Eingänge 1-8 (24\/)                                                 |
| 10  | 12               | Zuordnung zu Achskanal 1, 2 und 3                                           |
| 11  | 13               |                                                                             |
| 12  | 10               |                                                                             |
| 12  | 15               |                                                                             |
| 14  | 16               |                                                                             |
| 15  | 10               |                                                                             |
| 16  | 10               |                                                                             |
| 10  | 10               | Spannungsvorsargung für die digitalen Ausgänge 24V sefern                   |
| 17  | 724V             | Digitaleusgänge henutzt worden, muss diese Spappung von extern zugeführt    |
|     |                  | werden                                                                      |
| 10  |                  | Sollwort 2 / Stopper 2                                                      |
| 10  |                  | Sollwort 2 / Stepper 2                                                      |
| 20  |                  | Intwort 2                                                                   |
| 20  |                  |                                                                             |
| 21  |                  |                                                                             |
| 22  |                  | Istwert 2                                                                   |
| 23  | UNDY2: / SICN2:  | ISIWEILZ                                                                    |
| 24  | NDX2+/SIGN2+     | Istwert 2 / Stepper 2                                                       |
| 25  | NDX2- / SIGNZ-   | Istwert 2 / Stepper 2                                                       |
| 20  | 01               | Digital ausgange 1 8 (24V)                                                  |
| 27  | 02               | Zuordnung zu Achskanal I, Z und 3                                           |
| 28  | 03               |                                                                             |
| 29  | 04               |                                                                             |
| 30  | 05               |                                                                             |
| 31  | 00               |                                                                             |
| 32  | 07               |                                                                             |
| 33  |                  | Callwart 0 / Otannan 0                                                      |
| 34  | SERVU3 / PULSE3+ | Sollwert 3 / Stepper 3                                                      |
| 35  | AGND3 / PULSE3-  | Soliwert 3 / Stepper 3                                                      |
| 36  | CHA3+/CLKSSI3+   | Istwert 3                                                                   |
| 37  | CHA3- / CLKSSI3- | Istwert 3                                                                   |
| 38  | CHB3+/DATSSI3+   | Istwert 3                                                                   |
| 39  | CHB3-/DATSSI3-   | Istwert 3                                                                   |
| 40  | NDX3+/SIGN3+     | Istwert 3 / Stepper 3                                                       |
| 41  | NDX3- / SIGN3-   | Istwert 3 / Stepper 3                                                       |
| 42  | 19               | Digital-Eingange 9-16 (24V)                                                 |
| 43  | 110              | Zuordnung zu Achskanal 1, 2 und 3                                           |
| 44  | 111              |                                                                             |
| 45  | 112              |                                                                             |
| 46  | 113              |                                                                             |
| 47  | 114              | Schneller Latcheingang Achskanal 1                                          |
| 48  | 115              | Schneller Latcheingang Achskanal 2                                          |
| 49  | 116              | Schneller Latcheingang Achskanal 3                                          |
| 50  | GND-D            | Bezugspotential für alle Signalquellen. Dazu gehören u.a. digitale Ein- und |
|     |                  | Ausgänge und die Geberistwerte. GND-D muss mit dem Massepotential der       |
|     |                  | externen Geräteelektronik verbunden werden.                                 |

# 5.2.1 Stecker X1: 50-poliger SUB-D-Steckverbinder (Stift) MCU-3000 / MCU-3100

# 5.2.2 Zählweise des 50-poligen SUB-D-Steckers (Stift) X1

| <b>•</b> 34 |             | ■ 1         | oben                   |
|-------------|-------------|-------------|------------------------|
| <b>•</b> 35 | ■ 18        | • 2         |                        |
| 00          | <b>1</b> 9  | -           |                        |
| ■ 36        | <b>•</b> 20 | • 3         |                        |
| <b>■</b> 37 | ∎ 21        | ■ 4         |                        |
| <b>•</b> 38 | 21          | ■ 5         |                        |
| <b>•</b> 39 | • 22        | ■ 6         |                        |
| <b>4</b> 0  | • 23        | • 7         |                        |
| - +0        | ■ 24        | - 1         |                        |
| ■ 41        | ■ 25        | ■8          |                        |
| <b>•</b> 42 | ■ 26        | • 9         |                        |
| <b>•</b> 43 | 20          | <b>•</b> 10 |                        |
| <b>•</b> 44 | • 27        | ■ 11        |                        |
| <b>4</b> 5  | ■ 28        | ∎ 12        |                        |
| 10          | ■ 29        | 10          |                        |
| ■ 46        | <b>•</b> 30 | ■ 13        |                        |
| <b>•</b> 47 | ■ 31        | ■ 14        |                        |
| <b>4</b> 8  |             | ■ 15        |                        |
| <b>•</b> 49 | ■ 32        | <b>•</b> 16 |                        |
| ■ 50        | ■ 33        | ■ 17        | unten / PC-Bus-Stecker |
|             |             |             |                        |

| Pin | Name             | Gruppe                                                                   |
|-----|------------------|--------------------------------------------------------------------------|
| 1   | SERVO1 / PULSE1+ | Sollwert 1 / Stepper 1                                                   |
| 2   | AGND1 / PULSE1-  | Sollwert 1 / Stepper 1                                                   |
| 3   | SIGN1+           | Stepper 1                                                                |
| 4   | SIGN1-           | Stepper 1                                                                |
| 5   | CHA1+ / CLKSSI1+ | Istwert 1                                                                |
| 6   | CHA1- / CLKSSI1- | Istwert 1                                                                |
| 7   | CHB1+ / DATSSI1+ | Istwert 1                                                                |
| 8   | CHB1- / DATSSI1- | Istwert 1                                                                |
| 9   | NDX1+            | Istwert 1                                                                |
| 10  | NDX1-            | Istwert 1                                                                |
| 11  | 11               | Digital-Eingänge 1-6 (24V)                                               |
| 12  | 12               | Zuordnung zu Achskanal 1, 2, 3 und 4                                     |
| 13  | 13               |                                                                          |
| 14  | 14               |                                                                          |
| 15  | 15               |                                                                          |
| 16  | 16               |                                                                          |
| 17  | 01               | Digitalausgänge 13 (24V)                                                 |
| 18  | O2               | Zuordnung zu Achskanal 1, 2, 3 und 4                                     |
| 19  | O3               |                                                                          |
| 20  | +24V             | Spannungsversorgung für die digitalen Ausgänge 24V, sofern               |
|     |                  | Digitalausgänge benutzt werden, muss diese Spannung von extern zugeführt |
|     |                  | werden.                                                                  |
| 21  | SERVO2 / PULSE2+ | Sollwert 2 / Stepper 2                                                   |
| 22  | AGND2 / PULSE2-  | Sollwert 2 / Stepper 2                                                   |
| 23  | SIGN2+           | Stepper 2                                                                |
| 24  | SIGN2-           | Stepper 2                                                                |
| 25  | CHA2+ / CLKSSI2+ | Istwert 2                                                                |
| 26  | CHA2- / CLKSSI2- | Istwert 2                                                                |
| 27  | CHB2+ / DATSSI2+ | Istwert 2                                                                |
| 28  | CHB2- / DATSSI2- | Istwert 2                                                                |
| 29  | NDX2+            | Istwert 2                                                                |
| 30  | NDX2-            | Istwert 2                                                                |
| 31  | 17               | Digital-Eingänge 7-12 (24V)                                              |
| 32  | 18               | Zuordnung zu Achskanal 1, 2, 3 und 4                                     |
| 33  | 19               |                                                                          |
| 34  | 110              |                                                                          |
| 35  | 111              |                                                                          |
| 36  | 112              |                                                                          |
| 37  | 04               | Digitalausgänge 46 (24V)                                                 |
| 38  | 05               | Zuordnung zu Achskanal 1, 2, 3 und 4                                     |
| 39  | 06               |                                                                          |
| 40  | SERVO3 / PULSE3+ | Sollwert 3 / Stepper 3                                                   |
| 41  | AGND3 / PULSE3-  | Sollwert 3 / Stepper 3                                                   |
| 42  | SIGN3+           | Stepper 3                                                                |
| 43  | SIGN3-           | Stepper 3                                                                |
| 44  | CHA3+ / CLKSSI3+ | Istwert 3                                                                |
| 45  | CHA3- / CLKSSI3- | ISTWERT 3                                                                |
| 46  | CHB3+/DATSSI3+   |                                                                          |
| 47  | CHB3- / DATSSI3- | Istwert 3                                                                |
| 48  | NDX3+            |                                                                          |
| 49  | NDX3-            | Istwert 3                                                                |

# 5.2.3 Stecker X1: 78-poliger SUB-D-Steckverbinder (Buchse) MCU-3400C

| Pin | Name             | Gruppe                                                                      |
|-----|------------------|-----------------------------------------------------------------------------|
| 50  | 113              | Digital-Eingänge 13-18 (24V)                                                |
| 51  | 114              | Zuordnung zu Achskanal 1, 2, 3 und 4                                        |
| 52  | 115              |                                                                             |
| 53  | 116              |                                                                             |
| 54  | 17               |                                                                             |
| 55  | 18               |                                                                             |
| 56  | 07               | Digitalausgänge 79 (24V)                                                    |
| 57  | O8               | Zuordnung zu Achskanal 1, 2, 3 und 4                                        |
| 58  | O9               |                                                                             |
| 59  | GND-D            | Bezugspotential für alle Signalquellen. Dazu gehören u.a. digitale Ein- und |
|     |                  | Ausgänge und die Geberistwerte.                                             |
|     |                  | GND-D muss mit dem Massepotential der externen Geräteelektronik             |
|     |                  | verbunden werden.                                                           |
| 60  | SERVO4 / PULSE4+ | Sollwert 4 / Stepper 4                                                      |
| 61  | AGND4 / PULSE4-  | Sollwert 4 / Stepper 4                                                      |
| 62  | SIGN4+           | Stepper 4                                                                   |
| 63  | SIGN4-           | Stepper 4                                                                   |
| 64  | CHA4+ / CLKSSI4+ | Istwert 4                                                                   |
| 65  | CHA4- / CLKSSI4- | Istwert 4                                                                   |
| 66  | CHB4+ / DATSSI4+ | Istwert 4                                                                   |
| 67  | CHB4- / DATSSI4- | Istwert 4                                                                   |
| 68  | NDX4+            | Istwert 4                                                                   |
| 69  | NDX4-            | Istwert 4                                                                   |
| 70  | 119              | Digital-Eingänge 19-24 (24V)                                                |
| 71  | 120              | Zuordnung zu Achskanal 1, 2, 3 und 4                                        |
| 72  | 121              |                                                                             |
| 73  | 122              |                                                                             |
| 74  | 123              |                                                                             |
| 75  | 124              |                                                                             |
| 76  | O10              | Digitalausgänge 1012 (24V)                                                  |
| 77  | 011              | Zuordnung zu Achskanal 1, 2, 3 und 4                                        |
| 78  | 012              |                                                                             |

| Ro | Row 1 Pins 1-20 Row 2 Pins 21–39 |    | Row 3 Pins 40–59 |    | Row 4 Pins 60–78    |    |                     |
|----|----------------------------------|----|------------------|----|---------------------|----|---------------------|
| 1  | Puls+ CH1                        | 21 | Puls– CH1        | 40 | Sign+ CH1           | 60 | Sign– CH1           |
| 2  | CHA+ CH1                         | 22 | CHA– CH1         | 41 | CHB+ CH1            | 61 | CHB– CH1            |
| 3  | Puls+ CH2                        | 23 | Puls– CH2        | 42 | Sign+ CH2           | 62 | Sign– CH2           |
| 4  | CHA+ CH2                         | 24 | CHA– CH2         | 43 | CHB+ CH2            | 63 | CHB– CH2            |
| 5  | Puls+ CH3                        | 25 | Puls– CH3        | 44 | Sign+ CH3           | 64 | Sign– CH3           |
| 6  | CHA+ CH3                         | 26 | CHA– CH3         | 45 | CHB+ CH3            | 65 | CHB– CH3            |
| 7  | Puls+ CH4                        | 27 | Puls– CH4        | 46 | Sign+ CH4           | 66 | Sign– CH4           |
| 8  | CHA+ CH4                         | 28 | CHA– CH4         | 47 | CHB+ CH4            | 67 | CHB– CH4            |
| 9  | Puls+ CH5                        | 29 | Puls– CH5        | 48 | Sign+ CH5           | 68 | Sign– CH5           |
| 10 | CHA+ CH5                         | 30 | CHA– CH5         | 49 | CHB+ CH5            | 69 | CHB– CH5            |
| 11 | Puls+ CH6                        | 31 | Puls– CH6        | 50 | Sign+ CH6           | 70 | Sign– CH6           |
| 12 | CHA+ CH6                         | 32 | CHA– CH6         | 51 | CHB+ CH6            | 71 | CHB– CH6            |
| 13 | D-Inp 01                         | 33 | D-Inp 02         | 52 | D-Inp 03            | 72 | D-Inp 04            |
| 14 | D-Inp 05                         | 34 | D-Inp 06         | 53 | D-Inp 07            | 73 | D-Inp 08            |
| 15 | D-Inp 09                         | 35 | D-Inp 10         | 54 | D-Inp 11            | 74 | D-Inp 12            |
| 16 | D-Inp 13                         | 36 | D-Inp 14         | 55 | D-Inp 15            | 75 | D-Inp 16            |
| 17 | (Out 01)                         | 37 | (Out 02)         | 56 | CNC-Ready+ (Out 03) | 76 | CNC-Ready- (Out 04) |
| 18 | AIN6- (Out 05)                   | 38 | AIN6+ (Out 06)   | 57 | AIN5- (res. Out 07) | 77 | AIN5+ (res. Out 08) |
| 19 | AIN2-                            | 39 | AIN2+            | 58 | AIN1–               | 78 | AIN1+               |
| 20 | GND                              |    |                  | 59 | res. (+24V)         |    |                     |

### 5.2.4 Stecker X1: 78-poliger SUB-D-Steckverbinder (Buchse) MCU-3106

| - 70        | <b>5</b> 9  | - 00 | <b>2</b> 0   |  |
|-------------|-------------|------|--------------|--|
| ■ 78        | ■ 58        | • 39 | ■ 19         |  |
| • 77        | <b>5</b> 7  | • 38 | ■ 1 <u>8</u> |  |
| • 76        | - 57        | • 37 | - 10         |  |
| ■ 75        | ■ 56        | ■ 36 | ■ 17         |  |
| - 74        | ■ 55        | • 25 | ■ 16         |  |
| • /4        | ■ 54        | - 35 | ■ 15         |  |
| ∎ 73        | <b>•</b> 53 | • 34 | ■ 14         |  |
| • 72        | - 50        | • 33 | - 40         |  |
| ■ 71        | ■ 52        | • 32 | • 13         |  |
| <b>•</b> 70 | ■ 51        | • 31 | ■ 12         |  |
|             | <b>•</b> 50 | 0.   | ■ 11         |  |
| ∎ 69        | <b>•</b> 49 | • 30 | <b>1</b> 0   |  |
| <b>■</b> 68 | <b>4</b> 8  | ■ 29 | ∎ 9          |  |
| <b>■</b> 67 | 10          | ■ 28 | 0            |  |
| ■ 66        | • 47        | ■ 27 | • 8          |  |
| ■ 65        | <b>•</b> 46 | ■ 26 | ■ 7          |  |
| 00          | <b>•</b> 45 | 20   | ■ 6          |  |
| ∎ 64        | ■ 44        | ■ 25 | • 5          |  |
| <b>■</b> 63 | ∎ 43        | ■ 24 | ■ <i>A</i>   |  |
| ■ 62        | - +0        | • 23 |              |  |
| <b>■</b> 61 | ■ 42        | • 22 | ■ 3          |  |
| <b>•</b> 60 | <b>•</b> 41 | ■ 21 | • 2          |  |
| - 00        | <b>•</b> 40 | - 21 | • 1          |  |

### 5.2.5 Zählweise des 78-poligen SUB-D-Steckers (Buchse) X1

oben

unten / Verriegelung

#### 5.2.6 Sollwertkanäle

Jeder Achskanal der MCU-3000 / MCU-3100 kann als Servo- <u>oder</u> Schrittmotorkanal betrieben werden. Anhand nachfolgender Konfigurationstabelle bzw. nachfolgendem Bestückungsdruck kann die erforderliche Jumperkonfiguration ermittelt werden.

Werksseitig werden die Geräte für Servomotorachsen ausgeliefert.

Die softwaremäßige Projektierung und Auswahl des gewünschten Motorsystems muss zusätzlich mit Hilfe des TOOLSET Programms *mcfg.exe* angepasst werden.

| Kanal | Jumper | Stellung | Mode    |
|-------|--------|----------|---------|
| 1     | J1, J2 | 1-2      | Stepper |
|       |        | 2-3      | Servo   |
| 2     | J3, J4 | 1-2      | Stepper |
|       |        | 2-3      | Servo   |
| 3     | J5, J6 | 1-2      | Stepper |
|       |        | 2-3      | Servo   |

Teil-Bestückungsdruck (Bestückungsseite) der MCU-3000 (bedingt auch MCU-3100)



#### 5.2.6.1 Sollwertkanal für Servomotorachsen MCU-3000 / MCU-3100

Das Analogausgangssignal dient zur Ansteuerung eines Leistungsverstärkers, welcher als Drehzahlregler bzw. Momentenregler (Stromverstärker) geschaltet ist. Der Offset dieses Sollwertkanals wird werkseitig im nichtflüchtigen Flash-Speicher der MCU-3000 abgelegt und bei der Ausgabe softwaremäßig berücksichtigt. Die Analogsollwertausgabe wird nur bei *SERVO*-projektierten Achsen unterstützt.

#### 5.2.6.1.1 Pinbelegung Stecker X1, Achskanal 1

| Pin | Name   | Gruppe     | Beschreibung                                                               |
|-----|--------|------------|----------------------------------------------------------------------------|
| 1   | SERVO1 | Sollwert 1 | Analogausgangssignal 1 zur Ansteuerung eines Leistungsverstärkers (+/-10V, |
|     |        |            | 5mA). Dieses Signal ist von der MCU-3x00 Systemelektronik galvanisch       |
|     |        |            | getrennt und hat das Bezugspotential AGND1.                                |
| 2   | AGND1  | Sollwert 1 | Bezugspotential für SERVO1. Dieses Potential ist von der MCU-3x00          |
|     |        |            | Systemelektronik galvanisch getrennt.                                      |

Achtung: Die Stiftleisten J1 und J2 müssen in Stellung 2-3 gebrückt werden, damit die in der Tabelle aufgeführten Signale am Stecker X1 verfügbar sind!

#### 5.2.6.1.2 Pinbelegung Stecker X1, Achskanal 2

| Pin | Name   | Gruppe     | Beschreibung                                                               |
|-----|--------|------------|----------------------------------------------------------------------------|
| 18  | SERVO2 | Sollwert 2 | Analogausgangssignal 2 zur Ansteuerung eines Leistungsverstärkers (+/-10V, |
|     |        |            | 5mA). Dieses Signal ist von der MCU-3x00 Systemelektronik galvanisch       |
|     |        |            | getrennt und hat das Bezugspotential AGND2.                                |
| 19  | AGND2  | Sollwert 2 | Bezugspotential für SERVO2. Dieses Potential ist von der MCU-3x00          |
|     |        |            | Systemelektronik galvanisch getrennt.                                      |

Achtung: Die Stiftleisten J3 und J4 müssen in Stellung 2-3 gebrückt werden, damit die in der Tabelle aufgeführten Signale am Stecker X1 verfügbar sind!

5.2.6.1.3 Pinbelegung Stecker X1, Achskanal 3

| Pin | Name   | Gruppe     | Beschreibung                                                               |
|-----|--------|------------|----------------------------------------------------------------------------|
| 34  | SERVO3 | Sollwert 3 | Analogausgangssignal 3 zur Ansteuerung eines Leistungsverstärkers (+/-10V, |
|     |        |            | 5mA). Dieses Signal ist von der MCU-3x00 Systemelektronik galvanisch       |
|     |        |            | getrennt und hat das Bezugspotential AGND3.                                |
| 35  | AGND3  | Sollwert 3 | Bezugspotential für SERVO3. Dieses Potential ist von der MCU-3x00          |
|     |        |            | Systemelektronik galvanisch getrennt.                                      |

Achtung: Die Stiftleisten J5 und J6 müssen in Stellung 2-3 gebrückt werden, damit die in der Tabelle aufgeführten Signale am Stecker X1 verfügbar sind!

#### 5.2.6.2 Sollwertkanal für Schrittmotorachsen MCU-3000 / MCU-3100

Zur Ansteuerung einer Schrittmotor-Leistungsbaugruppe stehen vier Ausgangssignale zur Verfügung. Dies sind ein Pulssignal, ein Richtungssignal und deren invertierte Signale nach EIA Standard RS422. Alle Ausgänge liefern einen typischen Ausgangsstrom von -60mA (max. -150mA). Die maximale Impulsfrequenz der Schrittsignale beträgt 10MHz.

**Achtung:** Maßgeblich für die korrekte Anzahl auszuführender Schritte ist die positive Flanke des Schrittsignals PULSx+ bzw. die negative Flanke des Schrittsignals PULSx-.

| J.Z.U.Z.I FILIDELEGUING SLECKEL AT, ACHSKAHAL | 5.2.6.2.1 | Pinbelegung Stecker X1. | , Achskanal 1 |
|-----------------------------------------------|-----------|-------------------------|---------------|
|-----------------------------------------------|-----------|-------------------------|---------------|

| Pin | Name    | Gruppe    | Beschreibung               |
|-----|---------|-----------|----------------------------|
| 1   | PULSE1+ | Stepper 1 | Pulssignal                 |
| 2   | PULSE1- | Stepper 1 | Pulssignal invertiert      |
| 7   | SIGN1+  | Stepper 1 | Richtungssignal            |
| 8   | SIGN1-  | Stepper 1 | Richtungssignal invertiert |

Achtung: Die Stiftleisten J1 und J2 müssen in Stellung 1-2 gebrückt werden, damit die oben aufgeführten Signale am Stecker X1 verfügbar sind!

#### 5.2.6.2.2 Pinbelegung Stecker X1, Achskanal 2

| Pin | Name    | Gruppe    | Beschreibung               |
|-----|---------|-----------|----------------------------|
| 18  | PULSE2+ | Stepper 2 | Pulssignal                 |
| 19  | PULSE2- | Stepper 2 | Pulssignal invertiert      |
| 24  | SIGN2+  | Stepper 2 | Richtungssignal            |
| 25  | SIGN2-  | Stepper 2 | Richtungssignal invertiert |

Achtung: Die Stiftleisten J3 und J4 müssen in Stellung 1-2 gebrückt werden, damit die oben aufgeführten Signale am Stecker X1 verfügbar sind!

#### 5.2.6.2.3 Pinbelegung Stecker X1, Achskanal 3

| Pin | Name    | Gruppe    | Beschreibung               |
|-----|---------|-----------|----------------------------|
| 34  | PULSE3+ | Stepper 3 | Pulssignal                 |
| 35  | PULSE3- | Stepper 3 | Pulssignal invertiert      |
| 40  | SIGN3+  | Stepper 3 | Richtungssignal            |
| 41  | SIGN3-  | Stepper 3 | Richtungssignal invertiert |

Achtung: Die Stiftleisten J5 und J6 müssen in Stellung 1-2 gebrückt werden, damit die oben aufgeführten Signale am Stecker X1 verfügbar sind!

#### 5.2.6.3 Analogausgänge bei der MCU-3100

Bei der MCU-3100 stehen insgesamt 4 Analogausgänge mit jeweils 16 bit Auflösung zur Verfügung. Die ersten drei dieser Ausgänge werden als Stellgrößenausgänge für die Achskanäle 1-3 verwendet (siehe vorige Kapitel). Alle 4 Analogausgänge werden jedoch auch auf den Stecker X2 geführt. Bei Servosystemen kann in diesem Fall der 4. Ausgangskanal für andere Zwecke verwendet werden. Wenn einzelne oder alle Achskanäle als Stepperkanäle verwendet werden, können alle analogen Ausgänge für andere Zwecke verwendet werden. Die Zuweisung eines Wertes an diese Ausgänge erfolgt über das "Universelle Object Interface" mit Hilfe der Ressource #83. Der Signalanschluss kann mit einem SUB-D Adapter auf einen 9-poligen SUB-D Stecker (männlich oder weiblich) geführt werden. Dieser Adapter muss gesondert bestellt werden. Die Signale AGND sind alle miteinander verbunden.

Vorsicht: Wenn die Analogausgänge der Kanäle zur Achsregelung verwendet werden, sollten diese im Anschlussadapter nicht angeschlossen werden.

| Pin (SUB-D) | Name  | Funktion                          | Pin an X2<br>(FB) |
|-------------|-------|-----------------------------------|-------------------|
| 1           | AOUT0 | Analogausgang des. 1. Achskanals  | 1                 |
| 2           | AOUT1 | Analogausgang des. 2. Achskanals  | 3                 |
| 3           | AOUT2 | Analogausgang des. 3. Achskanals  | 5                 |
| 4           | AOUT3 | 4. Analogausgang                  | 7                 |
| 5           |       | unbelegt                          | 9                 |
| 6           | AGND0 | Bezugspotential für Analogausgang | 2                 |
| 7           | AGND1 | Bezugspotential für Analogausgang | 4                 |
| 8           | AGND2 | Bezugspotential für Analogausgang | 6                 |
| 9           | AGND3 | Bezugspotential für Analogausgang | 8                 |

#### 5.2.6.4 Sollwertkanäle bei der MCU-3400C

Bei der MCU-3400C / CPCI-8004 stehen vier Sollwertkanäle zur Verfügung. Obige Einstellungen werden an den Jumpern J1 bis J8 vorgenommen.

| Kanal | Name    | Funktion                    |
|-------|---------|-----------------------------|
| 1     | J1 / J2 | 1-2 = Stepper / 3-4 = Servo |
| 2     | J3 / J4 | 1-2 = Stepper / 3-4 = Servo |
| 3     | J5 / J6 | 1-2 = Stepper / 3-4 = Servo |
| 4     | J7 / J8 | 1-2 = Stepper / 3-4 = Servo |

#### 5.2.7 Impulserfassungskanäle

Die MCU-3000 / MCU-3100 ist mit bis zu drei Impulserfassungskanälen ausgestattet, an welchen unterschiedliche Enkodertypen wie beispielsweise Längenmaßstäbe oder Inkremental- oder Absolut-Drehgeber angeschlossen werden können. Als Eingangssignale werden zwei um 90° phasenverschobene Quadratursignale mit einer maximalen Impulsfrequenz von 2.0MHz (optional 5MHz) und TTL-Pegel verarbeitet. Eine Nullspur (Indexsignal) kann ebenfalls ausgewertet werden. Die von den Enkodern erfassten Signalpegel werden elektronisch vervierfacht und intern als Gleitpunktzahl mit doppelter Genauigkeit geführt. Somit ergibt sich ein praktisch uneingeschränkter Wertebereich für den Verfahrweg.

Die Impulserfassung der MCU-3100 ist mit einer leistungsfähigen Leitungsbruchüberwachung ausgestattet.

#### 5.2.7.1 SSI-Absolutwertgeber

Falls SSI-Absolutwertgeber zur Positionsrückmeldung verwendet werden sollen, sind für die jeweiligen Achskanäle entsprechende Umgebungsvariable in fwsetup.exe zu setzen (siehe Abschnitt "Umgebungsvariable der Steuerungshardware"

| Tabelle: | Umgebungsvariable | für SSI-Absolutwertgebe | er |
|----------|-------------------|-------------------------|----|
|----------|-------------------|-------------------------|----|

| Variable | Wert | Kommentar                                                                  |
|----------|------|----------------------------------------------------------------------------|
| MT?      | 2    | Servomotor mit SSI-Absolutwertgeber                                        |
|          | 4    | Schrittmotor mit SSI-Absolutwertgeber                                      |
|          |      | ? ist die Nummer des betreffenden Achskanals (Zählweise von 0 beginnend)   |
| SSIF?    | Х    | X = Zahlenwert für SSI-Frequenz in Hz                                      |
|          |      | Erlaubte Werte: 100.000 bis 4.000.000                                      |
|          |      | Defaultwert: 500000                                                        |
|          |      | Hinweis: Bei höheren Kabellängen muss die SSI-Frequenz vermindert werden,  |
|          |      | um die Signallaufzeiten zu kompensieren.                                   |
|          |      | ? ist die Nummer des betreffenden Achskanals (Zählweise von 0 beginnend)   |
| SSIP?    | Х    | X = Zahlenwert für die Anzahl der SSI-Bits                                 |
|          |      | Erlaubte Werte: 2 bis 30                                                   |
|          |      | Defaultwert: 26 (25 Ausgabeimpulse + 1 Extra-Bit)                          |
|          |      | ? ist die Nummer des betreffenden Achskanals (Zählweise von 0 beginnend)   |
| SSIBIN?  | 1    | Mit einem Wert ungleich 0, wird Binärcode beim SSI-Datenwort ausgewählt.   |
|          |      | Default ist Gray-Code.                                                     |
|          |      | ? ist die Nummer des betreffenden Achskanals (Zählweise von 0 beginnend)   |
| SSIPCK   | 1    | (ab RWMOS.ELF V2.5.3.130) Mit dieser Variablen wird die Wortbreite des     |
| SIZE?    |      | Gebers in Bit angegeben. Nur mit richtiger Angabe dieses Wertes ist eine   |
|          |      | Verfahrbereichserweiterung über den Meßbereich des Gebers und eine         |
|          |      | Vorzeichenergänzung des Positonswertes möglich. Default ist 24 bit.        |
|          |      | ? ist die Nummer des betreffenden Achskanals (Zählweise von 0 beginnend)   |
| SSIOUTOF | 1    | (ab RWMOS.ELF V2.5.3.130) Mit dieser Variablen kann ein Fehlerbit          |
| RANGE?   |      | identifiziert und zur Anzeige gebracht werden. Das Bit wird in der         |
|          |      | Systemvariablen DIGI im Bit EnkoderError abgebildet. Weiterhin wird im IFS |
|          |      | Register das Bit bet gesetzt. Somit kann auch ein Event in der SAP-        |
|          |      | Programmierumgebung ausgelöst werden.                                      |

Weiterhin muss zur Verwendung von SSI-Absolutwertgebern eine Betriebssystemvariante (RWMOS.ELF) mit der Option "optionSSI" verwendet werden. Im Programm fwsetup können unter der Registerkarte Monitor bei gebooteter Steuerung die vorhandenen Optionen von RWMOS.ELF verifiziert werden:

Beispiel:

Info: running » MCU-3000 / APCI-8001 [option1k5, optionPCI, optionRESOURCE]

Zum Anschluss der SSI-Schnittstelle sind die Pins mit der Bezeichnung CLKSSI für die SSI-Clock Signale und mit der Bezeichnung DATSSI für die SSI-Datenleitungen zu verwenden.

#### 5.2.7.2 Endat-Absolutwertgeber

Falls Endat-Absolutwertgeber (Version 2.2) zur Positionsrückmeldung verwendet werden sollen, sind für die jeweiligen Achskanäle entsprechende Umgebungsvariable in fwsetup.exe zu setzen (siehe Abschnitt "Umgebungsvariable der Steuerungshardware"

#### Tabelle: Umgebungsvariable für Endat-Absolutwertgeber

| Variable | Wert | Kommentar                                                                |
|----------|------|--------------------------------------------------------------------------|
| MT?      | 16   | Servomotor mit Endat 2.2 Absolutwertgeber                                |
|          |      | ? ist die Nummer des betreffenden Achskanals (Zählweise von 0 beginnend) |
| ENDATF   | Х    | X = Zahlenwert für SSI-Frequenz in Hz                                    |
| ?        |      | Erlaubte Werte: 100.000 bis 2.000.000                                    |
|          |      | Defaultwert: 500000                                                      |
|          |      | Hinweis: Bei höheren Kabellängen muss die ENDAT-Takt-Frequenz vermindert |
|          |      | werden, um die Signallaufzeiten zu kompensieren.                         |
|          |      | ? ist die Nummer des betreffenden Achskanals (Zählweise von 0 beginnend) |

Weiterhin muss zur Verwendung von Endat-Absolutwertgebern eine Betriebssystemvariante (RWMOS.ELF) mit der Option "optionENDAT" verwendet werden. Im Programm fwsetup können unter der Registerkarte Monitor bei gebooteter Steuerung die vorhandenen Optionen von RWMOS.ELF verifiziert werden:

Beispiel:

Info: running » MCU-3000 / APCI-8001 [option1k5, optionPCI, optionRESOURCE, optionENDAT]

Zum Anschluss der Endat-Schnittstelle sind die Pins mit der Bezeichnung CLKSSI für die Endat-Clock Signale und mit der Bezeichnung DATSSI für die Endat-Datenleitungen zu verwenden.

#### 5.2.7.3 Inkrementalenkoder mit invertierten Signalen (symmetrische Beschaltung)

Die Inkrementalenkoder mit symmetrischen Ausgängen sind besonders für den industriellen Einsatz geeignet und zu bevorzugen, da die Ausgangssignale mit invertiertem und nichtinvertiertem Signalpegel aller Spuren zur Verfügung stehen. Dies ermöglicht eine zuverlässige Impulserfassung auch in elektromagnetisch stark gestörter Umgebung. Die Auswerteelektronik auf der MCU-3000 / MCU-3100 beruht auf dem RS422-Standard und bildet eine Signaldifferenz zwischen den invertierten und nichtinvertierten Eingangssignalen. Störungen die in die Übertragungsleitungen eingekoppelt werden, können somit wirksam unterdrückt werden.

**Wichtig:** werksseitig wird der MCU-3000 / MCU-3100 für Inkrementalgeber mit symmetrischen Ausgängen ausgeliefert, kann jedoch durch den Anwender selbst für asymmetrische Enkoder (siehe nächste Tabelle) konfiguriert werden.

#### 5.2.7.4 Inkrementalenkoder ohne invertierte Signale (asymmetrische Beschaltung)

Es ist auch möglich, Inkrementalenkoder ohne invertierte Impulsfolgen zu verarbeiten. Jedoch sollten diese nur in elektromagnetisch wenig gestörter Umgebung, z.B. in Laboranwendungen, eingesetzt werden. Ebenso ist zu beachten, dass die Leitungslänge des Enkoderkabels gerade bei hohen Impulsfrequenzen nur wenige Meter betragen darf.

| Achskanal | Signalquelle | Lötjumper  | asymmetrisch                  | symmetrisch             |
|-----------|--------------|------------|-------------------------------|-------------------------|
| 1         | CHA1-        | J8 (3000)  | gebrückt                      | ungebrückt              |
|           |              | J10 (3100) | Pin 4 / X1 nicht beschalten!  | Pin 4 / X1 beschalten!  |
|           | CHB1-        | J11 (3000) | gebrückt                      | ungebrückt              |
|           |              | J9 (3100)  | Pin 6 / X1 nicht beschalten!  | Pin 6 / X1 beschalten!  |
|           | NDX1-        | J15 (3000) | gebrückt                      | ungebrückt              |
|           |              | J8 (3100)  | Pin 8 / X1 nicht beschalten!  | Pin 8 / X1 beschalten!  |
| 2         | CHA2-        | J9 (3000)  | gebrückt                      | ungebrückt              |
|           |              | J13 (3100) | Pin 21 / X1 nicht beschalten! | Pin 21 / X1 beschalten! |
|           | CHB2-        | J12 (3000) | gebrückt                      | ungebrückt              |
|           |              | J12 (3100) | Pin 23 / X1 nicht beschalten! | Pin 23 / X1 beschalten! |
|           | NDX2-        | J18 (3000) | gebrückt                      | ungebrückt              |
|           |              | J11 (3100) | Pin 25 / X1 nicht beschalten! | Pin 25 / X1 beschalten! |
| 3         | CHA3-        | J7 (3000)  | gebrückt                      | ungebrückt              |
|           |              | J17 (3100) | Pin 37 / X1 nicht beschalten! | Pin 37 / X1 beschalten! |
|           | CHB3-        | J10 (3000) | gebrückt                      | ungebrückt              |
|           |              | J16 (3100) | Pin 39 / X1 nicht beschalten! | Pin 39 / X1 beschalten! |
|           | NDX3-        | J14 (3000) | gebrückt                      | ungebrückt              |
|           |              | J14 (3100) | Pin 41 / X1 nicht beschalten! | Pin 41 / X1 beschalten! |

Tabelle 5-1: Konfiguration der Inkrementalenkoder für symmetrische und asymmetrische Betriebsart

Anmerkung: Die in der Tabelle aufgeführten Lötjumper befinden sich auf der Lötseite der MCU-3000 / MCU-3100 am oberen rechten Kartenrand.

#### Teil-Bestückungsdruck (Lötseite) der MCU-3000



**C58** 

#### 5.2.7.5 Optische Entkopplung der Impulserfassungskanäle

Alle Impulserfassungskanäle der MCU-3000 / MCU-3100 sind optisch entkoppelt. Dies ist insbesondere in elektromagnetisch stark gestörter Umgebung von Vorteil.

#### 5.2.7.6 Steckerbelegung für die Impulserfassungskanäle mit Inkrementalgebern

#### 5.2.7.6.1 Steckerbelegung X1, Kanal 1

| Pin | Name  | Funktion                                                              |
|-----|-------|-----------------------------------------------------------------------|
| 3   | CHA1+ | Inkrementalsignal (TTL-Rechteck-Impulsfolgen) Spur A                  |
| 4   | CHA1- | invertiertes Inkrementalsignal Spur A                                 |
| 5   | CHB1+ | Inkrementalsignal Spur B mit 90° elektrischem Phasenversatz zu Spur A |
| 6   | CHB1- | invertiertes Inkrementalsignal Spur B                                 |
| 7   | NDX1+ | Referenzsignal Spur 0                                                 |
| 8   | NDX1- | Invertiertes Referenzsignal Spur 0                                    |

#### 5.2.7.6.2 Steckerbelegung X1, Kanal 2

| Pin | Name  | Funktion                                                              |
|-----|-------|-----------------------------------------------------------------------|
| 20  | CHA2+ | Inkrementalsignal (TTL-Rechteck-Impulsfolgen) Spur A                  |
| 21  | CHA2- | invertiertes Inkrementalsignal Spur A                                 |
| 22  | CHB2+ | Inkrementalsignal Spur B mit 90° elektrischem Phasenversatz zu Spur A |
| 23  | CHB2- | invertiertes Inkrementalsignal Spur B                                 |
| 24  | NDX2+ | Referenzsignal Spur 0                                                 |
| 25  | NDX2- | Invertiertes Referenzsignal Spur 0                                    |

5.2.7.6.3 Steckerbelegung X1, Kanal 3

| Pin | Name  | Funktion                                                              |
|-----|-------|-----------------------------------------------------------------------|
| 36  | CHA3+ | Inkrementalsignal (TTL-Rechteck-Impulsfolgen) Spur A                  |
| 37  | CHA3- | invertiertes Inkrementalsignal Spur A                                 |
| 38  | CHB3+ | Inkrementalsignal Spur B mit 90° elektrischem Phasenversatz zu Spur A |
| 39  | CHB3- | invertiertes Inkrementalsignal Spur B                                 |
| 40  | NDX3+ | Referenzsignal Spur 0                                                 |
| 41  | NDX3- | Invertiertes Referenzsignal Spur 0                                    |

#### 5.2.7.7 Impulserfassungskanäle bei der MCU-3400C

Bei der MCU-3400C stehen vier Impulserfassungskanäle zur Verfügung. Belegung dazu siehe Kapitel 5.2.3.

#### 5.2.8 Pinbelegung Stecker X1, Digitale Eingänge (MCU-3000 / MCU-3100)

Die Prinzipschaltbilder der nachfolgend aufgelisteten digitalen Eingänge I1..I13 sind im [Kapitel 5.2.8.1] und Eingänge I14..I16 im [Kapitel 5.2.8.2] abgedruckt.

| Pin | Name | Funktion                                                                 |
|-----|------|--------------------------------------------------------------------------|
| 9   | 11   | Digital-Eingang 1                                                        |
| 10  | 12   | Digital-Eingang 2                                                        |
| 11  | 13   | Digital-Eingang 3                                                        |
| 12  | 14   | Digital-Eingang 4                                                        |
| 13  | 15   | Digital-Eingang 5                                                        |
| 14  | 16   | Digital-Eingang 6                                                        |
| 15  | 17   | Digital-Eingang 7                                                        |
| 16  | 18   | Digital-Eingang 8                                                        |
| 42  | 19   | Digital-Eingang 9                                                        |
| 43  | I10  | Digital-Eingang 10                                                       |
| 44  | 111  | Digital-Eingang 11                                                       |
| 45  | l12  | Digital-Eingang 12                                                       |
| 46  | l13  | Digital-Eingang 13                                                       |
| 47  | 114  | Digital-Eingang 14 und schneller Hardware-Latcheingang zum Speichern der |
|     |      | Istposition Achskanal 1                                                  |
| 48  | 115  | Digital-Eingang 15 und schneller Hardware-Latcheingang zum Speichern der |
|     |      | Istposition Achskanal 2                                                  |
| 49  | 116  | Digital-Eingang 16 und schneller Hardware-Latcheingang zum Speichern der |
|     |      | Istposition Achskanal 3                                                  |

#### 5.2.8.1 Prinzipschaltbild der MCU-G3-Digital-Eingänge I1..I13



#### 5.2.8.2 Prinzipschaltbild der MCU-G3-Digital-Eingänge I14..I16



### 5.2.9 Pinbelegung Stecker X1, Digitale Ausgänge (MCU-3000 / MCU-3100)

Die Prinzipschaltbilder der nachfolgend aufgelisteten digitalen Ausgänge O1..O8 sind im [Kapitel 5.2.9.1] abgedruckt.

| Pin | Name | Funktion          |
|-----|------|-------------------|
| 26  | 01   | Digital-Ausgang 1 |
| 27  | O2   | Digital-Ausgang 2 |
| 28  | O3   | Digital-Ausgang 3 |
| 29  | O4   | Digital-Ausgang 4 |
| 30  | O5   | Digital-Ausgang 5 |
| 31  | O6   | Digital-Ausgang 6 |
| 32  | 07   | Digital-Ausgang 7 |
| 33  | O8   | Digital-Ausgang 8 |

#### 5.2.9.1 Prinzipschaltbild der MCU-G3-Digital-Ausgänge O1..08



#### 5.2.10 MCU-3000 Pinbelegung Stecker P5, Freigaberelais

Am Steckverbinder P5 der MCU-3000 (entspricht X6 bei der MCU-3100) werden Relaiskontakte für die CNC-Bereit-Abfrage und Verstärkerfreigaben zur Verfügung gestellt. Es handelt sich hierbei um Schließer. Alle Relais sind nach Einschalten des PC, nach einem Rücksetzvorgang oder nach einem Fehler abgeschaltet.

Das Freigaberelais wird beim PCAP-Befehl *cl()* und beim SAP-Befehl *CL()* für den entsprechend selektierten Achskanal aktiviert.

Anmerkung: je nach Ausbaustufe der MCU-3000 / MCU-3100 sind 1 bis 3 Relaisausgänge verfügbar. Die Beschreibung der Signalbelegung erfolgt hier für den Adapter FB-RELAIS-3000 (SUB-D 9-polig), welcher an P5 (X6 bei MCU-3100) angeschlossen wird. Bei der MCU-3400C / CPCI-8004 erfolgt dieser Anschluss an P1.

Bei mehr als 3 Achskanälen werden die Anschlüsse ggf. auf einem 25-poligen SUB-D Steckverbinder zur Verfügung gestellt (siehe OHB). Bei den Relais handelt es sich um Halbleiterrelais mit einem Einschaltwiderstand von max. 25 Ohm. Das Schaltvermögen liegt bei 100mA, Schaltspannung maximal 60V.

| Pin (SUB-D) | Name | Funktion                                                              | Pin an P5 |
|-------------|------|-----------------------------------------------------------------------|-----------|
|             |      |                                                                       | bzw. X6   |
|             |      |                                                                       | (FB)      |
| 1           | R3-R | Relais S3(4), P-Kontakt, CNC Betriebsbereit                           | 1         |
| 2           | R1-R | Relais S1(3), P-Kontakt, Freigabe für Leistungsverstärker Achskanal 1 | 3         |
| 3           | R4-R | Relais S4(1), P-Kontakt, Freigabe für Leistungsverstärker Achskanal 2 | 5         |
| 4           | R2-R | Relais S2(5), P-Kontakt, Freigabe für Leistungsverstärker Achskanal 3 | 7         |
| 5           |      | Nicht belegt.                                                         | 9         |
| 6           | R3-S | Relais S3(4), Schließer, CNC Betriebsbereit                           | 2         |
| 7           | R1-S | Relais S1(3), Schließer, Freigabe für Leistungsverstärker Achskanal 1 | 4         |
| 8           | R4-S | Relais S4(1), Schließer, Freigabe für Leistungsverstärker Achskanal 2 | 6         |
| 9           | R2-S | Relais S2(5), Schließer, Freigabe für Leistungsverstärker Achskanal 3 | 8         |

#### 5.2.11 MCU-3400C Pinbelegung Stecker P1, Freigaberelais

Am Steckverbinder P1 werden Relaiskontakte für die CNC-Bereit-Abfrage und Verstärkerfreigaben zur Verfügung gestellt. Es handelt sich hierbei um Schließer. Alle Relais sind nach Einschalten des PC, nach einem Rücksetzvorgang oder nach einem Fehler abgeschaltet.

Das Freigaberelais wird beim PCAP-Befehl *cl()* und beim SAP-Befehl *CL()* für den entsprechend selektierten Achskanal aktiviert.

Anmerkung: je nach Ausbaustufe der MCU-3400C / CPCI-8004 sind 1 bis 4 Relaisausgänge verfügbar. Ggf. werden die Anschlüsse auf einem 25-poligen SUB-D Steckverbinder zur Verfügung gestellt (siehe OHB).

| Pin (FB10) | Name | Funktion                                                         |
|------------|------|------------------------------------------------------------------|
| 1          | R0-R | Relais0, P-Kontakt, CNC Betriebsbereit                           |
| 2          | R0-S | Relais0, Schließer, CNC Betriebsbereit                           |
| 3          | R1-R | Relais1, P-Kontakt, Freigabe für Leistungsverstärker Achskanal 1 |
| 4          | R1-S | Relais1, Schließer, Freigabe für Leistungsverstärker Achskanal 1 |
| 5          | R2-R | Relais2, P-Kontakt, Freigabe für Leistungsverstärker Achskanal 2 |
| 6          | R2-S | Relais2, Schließer, Freigabe für Leistungsverstärker Achskanal 2 |
| 7          | R3-R | Relais3, P-Kontakt, Freigabe für Leistungsverstärker Achskanal 3 |
| 8          | R3-S | Relais3, Schließer, Freigabe für Leistungsverstärker Achskanal 3 |
| 9          | R4-R | Relais4, P-Kontakt, Freigabe für Leistungsverstärker Achskanal 4 |
| 10         | R4-S | Relais4, Schließer, Freigabe für Leistungsverstärker Achskanal 4 |

#### 5.2.12 Anschluss- und Verdrahtungshinweise

#### 5.2.12.1 Masse- und Stromversorgungen

Das MCU-G3 ist elektrisch in zwei Zonen eingeteilt. Jede Zone hat ein eigenes Bezugspotential, wobei verschiedene Zonen galvanisch voneinander getrennt sind. In der ersten Zone befindet sich die MCU-G3-Systemlogik (CPU, Speicher usw.), in der zweiten die Impulserfassung (Enkoder), Sollwertgenerierung und die digitale Ein-Ausgabe-Logik. Die Separierung bietet maximalen Schutz der verschiedenen Baugruppen untereinander, verhindert Masse- und Erdschleifen und liefert ein hohes Maß an Störsicherheit gegenüber Störsignalen, welche sehr oft von den Antrieben über Signal- und Masseverbindungen eingestreut werden.

#### 5.2.12.2 Potentialausgleich

Da die oben erwähnten Versorgungs-Zonen komplett galvanisch voneinander getrennt sind, können sich zwischen diesen Zonen unter Umständen Potentialdifferenzen von mehreren kV aufbauen. Um dies zu verhindern, sollte zwischen den einzelnen Zonen ein Potentialausgleich erfolgen. Dies kann z.B. durch Erdung aller Versorgungsspannungen oder durch Potentialausgleichsnetzwerke auf der MCU-G3 erfolgen.

#### 5.2.12.3 Schirmführung

Alle Anschlussleitungen zur MCU-3x00 sind geschirmt auszuführen. Die Schirme müssen jeweils beidseitig auf die Gehäusemasse (nicht auf eine interne Masse wie z.B. Pin 50 von X1) aufgelegt werden. Deshalb müssen bei SUB-D-Steckverbindern massive Metallhauben (keine isolierenden Kunststoffhauben) verwendet werden. Nur durch ordnungsgemäße Schirmung aller Anschlussleitungen ist ein störungsfreier Betrieb, insbesondere der Zählereingänge, gewährleistet.

# 5.3 Einsatz mehrerer MCUG3-Controller in einem PC

Die im Lieferumfang enthaltene Treibersoftware erlaubt es, auch mehrere MCU-G3-Controller in einem PC zu betreiben. Hierbei sind folgende Eigenschaften zu beachten:

- Die im System vorhandenen Karten werden automatisch mit fortlaufenden Nummern, bei 0 beginnend durchnummeriert. Wenn sich nur ein Gerät im System befindet, wird diesem immer die Nummer 0 zugewiesen. Diese Nummerierung wird vom Plug+Play Bios oder Betriebssystem vorgenommen und ist vom jeweiligen Steckplatz im PC abhängig.
- Ein MCU-G3 Controller kann mit der dll-Funktion CardSelect() (siehe Handbuch PHB) angewählt werden. Bei erfolgreicher Selektion wird die Nr. der Karte zurückgeliefert (= Parameter). Wenn keine Anwahl erfolgt ist beim Start einer Applikation immer das Gerät 0 aktiv. Nach der Anwahl eines Gerätes mit CardSelect wird genau Dieses so lange über die DLL-Funktionen angesprochen, bis ein anderes Gerät selektiert wird.
- Wenn die angewählte Karte im System nicht existiert wird –1 zurückgeliefert. Auf diese Weise kann ermittelt werden, wie viele Systeme real im PC installiert sind. Nach einem nicht erfolgreichen Aufruf von CardSelect ist das Gerät 0 angewählt.
- Die Nummer der Karte ist vom Slot abhängig, in dem die jeweiligen Geräte installiert sind , aber nicht von der Karte selbst. Die Einbauposition muss also jederzeit erhalten bleiben, da sich ansonsten die Zuordnung ändern kann.
- In der Anwendersoftware ist zunächst, wie üblich das Kommando InitMcuSystem3 () aufzurufen. Danach kann mit CardSelect ein beliebiges, im PC installiertes Gerät angewählt werden. Dann muss für dieses Gerät und alle folgenden das Kommando InitMcuSystem3() erneut aufgerufen werden. Ggf. muß auch jede Steuerung für sich gebootet werden. Hierbei ist zu beachten, daß für jedes Gerät im System die globalen Datenstrukturen (z.B. tsrp[]) getrennt deklariert werden müssen.
- Beim Ansprechen eines jeden Gerätes müssen die für das jeweilige Gerät deklarierten Datenstrukturen (insbesondere TSRP) verwendet werden.
- Im Programm mcfg kann im Fenster "Projekt Parameter" auf der Registerkarte "Environment" eine Karte ausgewählt werden. Diese Information wird beim Beenden von mcfg gespeichert und ist nach erneutem Aufruf automatisch wieder aktiv.
   Besondere Vorsicht ist geboten, wenn in mcfg Achsbewegungen durchgeführt werden sollen. Es muß jederzeit gewährleistet sein, daß auch das gewünschte Gerät angewählt ist.
- Im Programm fwsetup kann auf der Registerkarte "Tools" eine Karte ausgewählt werden. Diese Information wird beim Beenden von fwsetup jedoch nicht gespeichert.
- Um zu gewährleisten, daß mit einer entsprechenden Gerätenummer, tatsächlich auch immer das gewünschte Gerät angesprochen wird, z.B. entsprechend der Steckerbeschriftung jedoch unabhängig vom Steckplatz, kann jedes Gerät mit einer kennzeichnenden Environment-Variable ausgestattet werden. Diese Variable kann dann mit getEnvStr() abgefragt werden. Mit dieser Vorgehensweise ist es möglich die Verwendung der Gerätenummern variabel zu gestalten. Hierbei ist Kapitel 3.12 ff und PHB / Kapitel 4.4.12 zu beachten.

Besondere Vorsicht ist bei Multi-Threading-Anwendungen geboten, weil durch einen Thread-Wechsel jederzeit die Ausführung des Programmcodes umgeschaltet werden kann. Eine Thread-Umschaltung während Zugriffen auf die MCU-3x00 muß verhindert werden, falls die Möglichkeit besteht, daß nach dem Thread-Wechsel ein Anderes als das derzeit selektierte Gerät angesprochen werden soll.



# 5.4 Bestückungsdruck der MCU-3000



# 5.5 Bestückungsdruck der MCU-3000 (Bottom-Side)



# 5.6 Bestückungsdruck der MCU-3100

# 5.7 Bestückungsdruck der MCU-3100 (Bottom-Side)

![](_page_59_Figure_2.jpeg)

![](_page_60_Figure_1.jpeg)

# 5.8 Bestückungsdruck der MCU-3400C

![](_page_61_Figure_1.jpeg)

# 5.9 Bestückungsdruck der MCU-3106 – Top Side

Naci Ista Hi

# 5.10 Bestückungsdruck der MCU-3106 – Bottom Side

![](_page_62_Figure_2.jpeg)

# 5.11 Technische Daten der MCU-3000 / MCU-3400C

| Achsen:                                           | 1, 2, oder 3. Erweiterung auf bis zu 8 Achsen mit Optionsprint<br>OPMF-3001<br>Gemischter Betrieb von Servo- oder Schrittmotoren möglich                                                   |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Achsprozessor:                                    | RISC, MIPS R5K-Familie<br>Taktfrequenz: 150 MHz (250 MHz Option), Wortbreite: 64 Bit<br>Spitzen-Instruktionsrate: 325 Dhrystone 2.1 Mips und 500 MFlops                                    |
| Arbeitsspeicher:                                  | MCU-6000: 4 MB SDRAM<br>MCU-3000: 16 MB SDRAM<br>MCU-3400C: 16 MB SDRAM<br>1 MByte Option<br>8 kB FLASH für Hardware-Systemparameter                                                       |
| Bus:<br>MHz                                       | PCI Universal, Wortbreite: 32 Bit, Busfrequenz: 33MHz oder 66                                                                                                                              |
| Adressierung:                                     | PCI Plug+Play belegt werden ca. 80 MB physischer Adress-<br>Speicher (kein PC-Arbeitsspeicher!)                                                                                            |
| Gebereingänge:                                    | Richtungsdiskriminator für Inkrementalgeber mit 2 um 90°<br>phasenverschobenen Impulsspuren und Nullimpuls, wahlweise<br>deren invertierte Impulsspuren (6 Kanäle)<br>SSI-Absolutwertgeber |
| Impulspegel:                                      | 5V RS422 bzw. TTL                                                                                                                                                                          |
| Inkremental-<br>Geberauswertung:                  | 4 fach, 32 bit mit Vorzeichen, 2.0 MHz (8 MHz nach<br>Vervierfachung)<br>MCU-3400C: 1MHz (4MHz nach Vervierfachung)                                                                        |
| SSI-Geberauswertung:                              | 132bit, Gray-/Binär-Codes, variable Frequenz 30kHz 10MHz                                                                                                                                   |
| Geberversorgung:                                  | externe Hilfsspannung je nach Gebertyp (530V)                                                                                                                                              |
| Sollwertausgänge für<br>Servo-Leistungsendstufen: | 16-Bit-DA-Wandler, +/-10V, 5mA, potentialfrei                                                                                                                                              |
| Sollwertausgänge für<br>Schrittmotor-Endstufen:   | RS422-Puls- und Richtungssignale und deren invertierte<br>Impulsfolgen, Ausgangsstrom typisch: -60mA (max150mA)<br>Impulsfrequenz: max. 10 MHz                                             |
| Digitale Eingänge:                                | 16 Eingänge optisch entkoppelt 1836V, Eingangsstrom bei 24V<br>ca. 8 mA. Funktionsweise frei programmierbar<br>Low Pegel: 010V – High Pegel: 1630V<br>MCU-3400C: 24 Eingänge               |

| Digitale Ausgänge:               | 8 Ausgänge optisch entkoppelt, Ausgangstyp: PNP 24V,<br>500mA (interne Strombegrenzung bei 1A)<br>Funktionsweise frei programmierbar,<br>Sollzustand nach Reset programmierbar;<br>MCU-3400C: 12 Ausgänge<br>Relaisausgänge max 60V/100mA                                                                                                                                                          |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sicherheits-Funktionen:          | Watchdog-Schaltung, Power-On-Reset,<br>leistungsfähiges CPU-Exceptionmodell                                                                                                                                                                                                                                                                                                                        |
| Externe Stromversorgung:         | 24V Stromaufnahme je nach Belastung der Digital-Ausgänge                                                                                                                                                                                                                                                                                                                                           |
| Aufbau:                          | Kurze Einsteckkarte, 8fach-Multilayer, benötigt wird 1 Slot<br>MCU-3400C: CompactPCI 100 x 160 (3 HE)                                                                                                                                                                                                                                                                                              |
| PC-Stromversorgung:              | 3.3V/0.8A,<br>Achtung: 3.3V-Versorgungsspannung wird z.T. von älteren<br>Motherboards nicht zur Verfügung gestellt!<br>5V/1.0A                                                                                                                                                                                                                                                                     |
| Kaskadierung:                    | MCU-3000: bis zu insges. 8 Achsen mit Option OPMF-3001                                                                                                                                                                                                                                                                                                                                             |
| Reglersoftware:                  | PIDF (PID-Regler mit Vorwärtskompensation)                                                                                                                                                                                                                                                                                                                                                         |
| Regelzeiten:                     | 1.28 ms (Totzeit ca. 0.05 ms)<br>Optional ca. 0.3 ms bis 4 ms                                                                                                                                                                                                                                                                                                                                      |
| Interpolation:                   | 2D 3D linear, 2D 3D zirkular, helix, asynchrone und synchrone Interpolation mit Nebenachsen                                                                                                                                                                                                                                                                                                        |
| Anschlussstecker:<br>Anschaltung | MCU-3000: 50-poliger SUB-D-Stecker kpl. Peripherie-Anschaltung MCU-3400C: 78-poliger SUB-D-Stecker kpl. Peripherie-                                                                                                                                                                                                                                                                                |
|                                  | 10-poliger FB-Steckverbinder mit 3 potentialfreien Relaiskontakten<br>10poliger FB-Steckverbinder für CAN-Bus (Option),<br>10poliger FB-Steckverbinder für Interbus (Option)                                                                                                                                                                                                                       |
| Weitere Optionen:                | Spline- und CAD-Interpolation, elektronisches Getriebe (z.B. bei<br>Gantry Achsen), G-Code- Programmierung,<br>Geschwindigkeitsbegrenzung an Profilübergängen per Look-Ahead,<br>Mantelflächenbearbeitung, Unterstützung von No-Feed-Rate<br>Achsen, Scanner-Funktionalität, ELCAM Funktionalität<br>(Kurvenscheibensteuerung), Fliegende Säge,<br>SSI-Absolutwertgeber, PWM-Stellgrössenausgänge, |
| Fertigung:                       | Die Baugruppe wird nach DIN ISO 9001 gefertigt.                                                                                                                                                                                                                                                                                                                                                    |
| Prüfung:                         | Die Baugruppe ist nach CE-konformen Richtlinien geprüft.                                                                                                                                                                                                                                                                                                                                           |

# 6 Einstellungen und Projektierungen

Nachdem alle MCU-G3 Hard- und Softwarekomponenten korrekt installiert wurden, können die achs- und motorspezifischen Einstellungen und Projektierungen mit Hilfe des TSW-Programms *mcfg.exe* wie in den nachfolgend beschriebenen Kapiteln durchgeführt werden.

# 6.1 Freischaltausgang für Leistungsendstufe

Manchmal ist es erforderlich die Leistungsendstufe nur freizuschalten, wenn der Regelkreis geschlossen ist. Dies kann mit Hilfe eines programmierbaren MCU-G3-Digitalausgangs geschehen, oder die für solche Zwecke vorgesehenen Freigaberelais [Kapitel 5.2.10], welcher mit PAE-Funktion konfiguriert [MCFG / Kapitel 1.7.2.6] ist. Dieser Ausgang wird durch Schließen des Regelkreises aktiviert. Weiterhin kann mit diesem Ausgang z.B. eine Ruhestrombremse angesteuert werden. Bei Verwendung eines Drehzahlreglers muß jedoch gleichzeitig der Verstärker gesperrt werden, da sich durch den Drift sonst ein Drehmoment aufbauen kann.

# 6.2 Ermittlung der PIDF-Filterparameter

Die Einstellung der achsen- und motorspezifischen Filterparameter *kp*, *ki*, *kd* und *kpl* kann empirisch oder analytisch erfolgen. Im Programm *mcfg.exe* wird die Möglichkeit geboten, das Systemverhalten grafisch anzuzeigen. Dadurch ist eine gute Beurteilung des Regelverhaltens möglich. Vor jeder Einstellung der Filterparameter sollte geprüft werden, ob die Stellgrößenausgabe und die Positionsrückmeldung mit der richtigen Phasenlage erfolgen, da sonst nach dem Schließen des Regelkreises beim Auftreten einer Regeldifferenz die Motorachse sofort unkontrolliert wegläuft.

Bei allen experimentellen Einstellungen bei angeschalteter Motorachse ist zu beachten, daß das System u.U. mit erheblichen Amplituden und mit hohen Beschleunigungen schwingen kann. Eine Gefährdung von Mensch und Maschine muß durch entsprechende Vorsichtsmaßnahmen unbedingt ausgeschlossen werden! Weiterhin kann auch ein zunächst stabil erscheinendes System durch Anregung zum Oszillieren gebracht werden!

Mögliche Schutzmaßnahmen sind hierbei Not-Aus-Schalter, Abkoppeln der Motorachse von der Last usw. ist hier eine Schleppfehlerüberwachung möglich

Anmerkung: Weitere Informationen zum PIDF-Filter sind im [PHB / Kapitel 2.1.2] enthalten.

#### 6.2.1 Drehzahlregler

Zur Regelung einer Regelstrecke mit unterlagertem Drehzahlregler reicht prinzipiell ein Proportionalregler aus. Zur Einstellung werden zunächst alle Filterparameter auf Null und *kp* z.B. auf 1 gesetzt. Nun kann mit *kp* variiert werden, bis ein geeignetes Regelverhalten gefunden ist. Eine zusätzliche Verbesserung des Führungsverhaltens kann durch die Geschwindigkeitsvorsteuerung erreicht werden. Um diesen Wert experimentell zu bestimmen, setzt man den Proportionalanteil (kp) temporär auf 0. Wenn ein geeigneter Wert für kfcv gefunden wurde, wird der vorher ermittelte Wert von kp wieder eingetragen.

**Vorsicht:** Wenn kp auf 0 gesetzt wird, ist die Achse ungeregelt und wird nur gesteuert betrieben. Dadurch sind erhebliche Abweichungen zwischen Soll- und Istposition möglich. In diesem Zustand muss das System ständig vom Anwender überwacht werden. Vor dem Wiederhinzufügen des Proportionalanteils (kp) muß der Regelkreis geöffnet werden, da ansonsten mit unerwarteten Achsbewegungen gerechnet werden muß.

Durch einen zusätzlichen Integralanteil *ki* kann eine bleibende Regelabweichung bei Lageregelung z.B. durch den Eingangsoffset des Drehzahlreglers verhindert werden.

#### 6.2.2 Stromverstärker

Beim Einsatz einer Leistungsbaugruppe, welche als Stromverstärker ausgeführt ist, wird prinzipiell ein PD-Regler (*kp, kd, kpl*) benötigt. Um den Schleppfehler beim Verfahren und bei statischer Belastung der Motorwelle zu verhindern, kann auch hier zusätzlich ein Integralanteil aufgeschaltet werden. Als Faustregel kann hier angesetzt werden:

$$T_{N} >= 5 * T_{V}$$

und

 $T_V >= 5 * T_A$ 

Nun kann mit *kp* variiert werden, um den besten Betriebspunkt zu suchen. In diesem Betriebspunkt kann nochmals mit *kpl* variiert werden. Falls das System stabil wird, jedoch zu weich ist, kann das Verhältnis  $T_V / T_A$  verkleinert werden.

#### 6.2.3 Spannungsverstärker

Beim Einsatz einer Leistungsbaugruppe, welche als Spannungsverstärker ausgeführt ist, wird prinzipiell ein P- oder PD-Regler benötigt. Durch einen zusätzlichen I-Anteil kann der Positionsfehler bei statischer Belastung verhindert werden. Die experimentelle Einstellung der Filterparameter ist ähnlich wie beim Drehzahlregler durchzuführen. Eine Verbesserung der Reglerhärte kann durch den D-Anteil erfolgen, mit dem die mechanische oder die elektrische Zeitkonstante des Motors kompensiert werden kann.

#### 6.2.4 Schrittmotorleistungsverstärker

#### 6.2.4.1 Schrittmotorsystem ohne Positionsrückmeldung

Beim Einsatz von Schrittmotorleistungsverstärkern ohne Wegrückmeldung, wird lediglich ein Proportional-Regler mit einer Verstärkung von kp = 0.04 und einer Vorwärtskompensation benötigt. Alle anderen Filterparameter werden automatisch auf den Wert 0 gesetzt. Die Einstellung der Reglerparameter erfolgt automatisch durch das System. Der Anwender hat hier keine Einstellmöglichkeit.

Obwohl es sich hier scheinbar um ein Open-Loop System handelt, muss bei der Handhabung der Achse dennoch der Regelkreis mit CloseLoop geschlossen werden. Istwert ist hier die Anzahl der tatsächlich ausgegebenen Schritte. In diesem Modus ist eine Verifikation mit Istwertgebern durchaus möglich, allerdings wird dann der Wert des Gebers in der Variablen aux (Funktionen rdaux, wraux) und in der Einheit digits ohne Einheitenumrechung geführt.

#### 6.2.4.2 Leistungsverstärker mit Schritt-Richtungs-Sollwerteingang und Positionsregelung

Beim Einsatz von Leistungsverstärkern mit einer Schritt-Richtungs Sollwertvorgabe, welche aber selbst im Closed-Loop-Mode, also mit Wegrückmeldung betrieben werden, gelten für die Steuerungsbaugruppe die gleichen Vorgaben wie bei Schrittmotoren ohne Positionsrückmeldung. Allerdings wird hier kein dauerhafter Schrittfehler auftreten, da hier eine Positionsregelung vom Leistungsverstärker übernommen wird. In einer derartigen Konfiguration können hier unterschiedliche Motortypen wie Gleichstrommotoren, Asynchronmotoren, elektronisch kommutierte Motoren oder auch Schrittmotoren zum Einsatz kommen.

#### 6.2.5 Vorsteuerung

Mit den Parametern *kfca* und *kfcv* kann ein Beschleunigungs- und Geschwindigkeitsvorsteuersignal erzeugt werden. Mit Hilfe der Vorsteuerung ist es möglich, den Schleppfehler während Positioniervorgängen zu verkleinern. Die Stabilität des Regelkreises wird durch die Vorsteuerung nicht beeinflusst.

#### 6.2.5.1 Ermittlung der Koeffizienten

Um die Vorsteuerkoeffizienten experimentell zu ermitteln, wird zunächst ein kurzes Trapez-Profil abgefahren und mit Hilfe der grafischen System-Analyse beurteilt, um geeignete Profildaten und Skalierungsparameter einzustellen. Hierbei sollte mit mittlerer Beschleunigung und Geschwindigkeit gefahren werden. Beschleunigungs-, Bremsrampe und linearer Verfahrbereich sollten in etwa gleichmäßig auf dem Bildschirm verteilt sein und komplett dargestellt werden. Danach wird der Regelalgorithmus deaktiviert durch Nullsetzen der Parameter *kp*, *ki* und *kd*. Nun können die Vorsteuerparameter so lange verändert werden, bis der Sollund Istdrehzahlverlauf nach Abfahren des eingestellten Profils in guter Näherung übereinstimmen. Nach jeder Veränderung der Parameter müssen die Menüpunkte [Clear Position] und [Update Filter] angewählt werden, damit die neuen Parameter auch übernommen werden.

Bei Verwendung eines Stromverstärkers wird zunächst die Beschleunigungsvorsteuerung *kfca* so eingestellt, daß die Beschleunigungsrampen von Soll- und Istdrehzahl gut übereinstimmen. Danach wird die Geschwindigkeitsvorsteuerung so eingestellt, daß die Drehzahl im linearen Drehzahlbereich parallel verläuft. Nun können die beiden Werte wechselweise geringfügig verändert werden bis Soll- und Istdrehzahlverlauf am besten übereinstimmen.

Bei Verwendung eines Drehzahlreglers wird mit der Geschwindigkeitsvorsteuerung kfcv begonnen.

Nachdem die optimalen Parameter gefunden sind, werden die Filterparameter kp, ki und kd wieder eingetragen und das Verhalten nochmals überprüft. Zur Sicherung müssen die eingestellten Daten abgespeichert werden.